资源描述:
《27.2.2_相似三角形应用举例.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、27.2.2相似三角形应用举例WXQ1.定义:2.定理(平行法):3.判定定理一(边边边):4.判定定理二(边角边):5.判定定理三(角角):1、判断两三角形相似有哪些方法?2、相似三角形有什么性质?对应角相等,对应边的比相等WXQ如图所示,△ABC∽△A′B′C′,其中AB=10,A′B′=5,BC=12,那么B′C′=__________?ABCA′B′C′因为△ABC∽△A′B′C′,WXQ胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高
2、146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。WXQ例3:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。如图27.2-8,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BOOBA(F)EDWXQDEA(F)BO解:太阳光是平行线,因此∠BAO=∠EDF又∠AOB=∠DFE=90°∴△ABO~△DEFBOEFOAFD=OA×EFFDBO==201×23=134(m)答-------2m3m201m?例题DEA(F)BO2m3m201m?
3、WXQ1、在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?解:设高楼的高度为X米,则答:楼高36米.体验:WXQ2.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高m。OBDCA┏┛(第1题)8给我一个支点我可以撬起整个地球!---阿基米德1m16m0.5m?WXQ3.(深圳市中考题)小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)ADBCE┏┏0.8m5m10m?2.4mWXQSTPQRba例2:例2为了估算河的
4、宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.WXQ2.数学兴趣小组测校内一棵树高,有以下两种方法:CDEABABC方法一:如图,把镜子放在离树(AB)8M点E处,然后沿着直线BE后退到D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.8M,观察者目高CD=1.6M;WXQ2.数学兴趣小组测校内一棵树高,有以下两种方法:方法二:如图,把长为2.40M的标杆CD直立在地面上,量出
5、树的影长为2.80M,标杆影长为1.47M。分别根据上述两种不同方法求出树高(精确到0.1M)请你自己写出求解过程,并与同伴探讨,还有其他测量树高的方法吗?FDCEBAWXQ课堂小结:一、相似三角形的应用主要有如下两个方面1测高(不能直接使用皮尺或刻度尺量的)2测距(不能直接测量的两点间的距离)、测高的方法测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决、测距的方法测量不能到达两点间的距离,常构造相似三角形求解解决实际问题时(如测高、测距),一般有以下步骤:①审题②构建图形③利用相似解决问题WXQ1.小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己
6、的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为米.WXQ2.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.WXQ例5.已知左右并排的两棵大树高分别是AB=8cm,CD=12cm,两树的根部的距离BD=5m,一个身高1.6m的人沿着正对这两棵数的一条水平直路从左到右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C.WXQ例5:已知左,右并排的两棵大树的
7、高分别是AB=8m和CD=12m,两树的根部的距离BD=5m。一个身高1.6m的人沿着正对着两棵树的一条水平直路从左向右前进,当他与左边较低的树的距离小于多少时,就不能看见右边较高的树的顶端点C?KⅡ盲区观察者看不到的区域。仰角:视线在水平线以上的夹角。水平线视线视点观察者眼睛的位置。(1)FBCDHGlAK(1)FBCDHGlAⅠKWXQFABCDHGKⅠⅡl(2)分析:假设观察者从左向右走到点E时,他的眼