27.2.2_相似三角形应用举例

27.2.2_相似三角形应用举例

ID:36096892

大小:550.00 KB

页数:19页

时间:2019-05-05

27.2.2_相似三角形应用举例_第1页
27.2.2_相似三角形应用举例_第2页
27.2.2_相似三角形应用举例_第3页
27.2.2_相似三角形应用举例_第4页
27.2.2_相似三角形应用举例_第5页
资源描述:

《27.2.2_相似三角形应用举例》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、27.2.2相似三角形应用举例胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。小小旅行家:走近金字塔小小考古家:埃及著名的考古专家穆罕穆德决定重新测量胡夫金字塔的高度.在一个烈日高照的上午.他和儿子小穆罕穆德来到了金字塔脚下,他想考一考年仅14岁的小穆罕穆德.2米木杆皮尺给你一条2米高的木杆,一把皮尺.

2、你能利用所学知识来测出塔高吗?例3:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。如图27.2-8,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BO1.小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为米.2.小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球

3、是直线运动)ADBCE┏┏0.8m5m10m?例2:如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.ADCEB解:因为∠ADB=∠EDC,∠ABC=∠ECD=90°,所以△ABD∽△ECD,答:两岸间的大致距离为100米.我们还可以在河对岸选定一目标点A,再在河的一边选点D和E,使DE⊥AD,然后,再选点B,作BC∥DE,与视线EA相交

4、于点C。此时,测得DE,BC,BD,就可以求两岸间的大致距离AB了。ADEBC此时如果测得BD=45米,DE=90米,BC=60米,求两岸间的大致距离AB.例3.已知左右并排的两棵大树高分别是AB=8m,CD=12m,两树的根部的距离BD=5m,一个身高1.6m的人沿着正对这两棵树的一条水平直路从左到右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C.1.铁道的栏杆的短臂为OA=1米,长臂OB=10米,短臂端下降AC=0.6米,则长臂端上升BD=米。AODBC62.如图:小明想测量电线杆AB的高度,发

5、现电线杆的影子恰好落在土坡的坡面CD和地面CB上,测得CD=4m,BC=10m,CD与地面成30度角,且此时测得1米杆子的影子长为2米,那么电线杆的高度是多少?ABDCwww.czsx.com.cn3.数学兴趣小组测校内一棵树高,有以下两种方法:方法一:如图,把镜子放在离树(AB)8m点E处,然后沿着直线BE后退到D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.8M,观察者目高CD=1.6M;CDEABABC3.数学兴趣小组测校内一棵树高,有以下两种方法:方法二:如图,把长为2.40M的标杆CD直立在地面上,量出树的

6、影长为2.80M,标杆影长为1.47M。分别根据上述两种不同方法求出树高(精确到0.1M)请你自己写出求解过程,并与同伴探讨,还有其他测量树高的方法吗?FDCEBA如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x。O思考:(分析:如图,要想求厚度x,根据条件可知,首先得求出内孔直径AB。而在图中可构造出相似形,通过相似形的性质,从而求出AB的长度。)挑战自我如图,△ABC是一块锐角三角形余料,边BC=120毫

7、米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?NMQPEDCBA解:设正方形PQMN是符合要求的△ABC的高AD与PN相交于点E。设正方形PQMN的边长为x毫米。因为PN∥BC,所以△APN∽△ABC所以AEAD=PNBC因此,得x=48(毫米)。答:-------。80–x80=x120课堂小结:一、相似三角形的应用主要有如下两个方面1测高(不能直接使用皮尺或刻度尺量的)2测距(不能直接测量的两点间的距离)、测高的方法测量不能到达顶部的物体的

8、高度,通常用“在同一时刻物高与影长的比例”的原理解决、测距的方法测量不能到达两点间的距离,常构造相似三角形求解如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。