湖北省龙泉中学2011届高三数学综合训练(10)理科 新人教版.doc

湖北省龙泉中学2011届高三数学综合训练(10)理科 新人教版.doc

ID:56550078

大小:282.50 KB

页数:9页

时间:2020-06-28

湖北省龙泉中学2011届高三数学综合训练(10)理科 新人教版.doc_第1页
湖北省龙泉中学2011届高三数学综合训练(10)理科 新人教版.doc_第2页
湖北省龙泉中学2011届高三数学综合训练(10)理科 新人教版.doc_第3页
湖北省龙泉中学2011届高三数学综合训练(10)理科 新人教版.doc_第4页
湖北省龙泉中学2011届高三数学综合训练(10)理科 新人教版.doc_第5页
资源描述:

《湖北省龙泉中学2011届高三数学综合训练(10)理科 新人教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、龙泉中学2011届高三理科数学综合训练(10)一、选择题:本次题共10小题,每小题5分,共50分,1.已知集合,则A与B的关系为A.B.C.D.2.已知函数的导函数为,,且,如果,则实数的取值范围为A.()B.C.D.3.已知函数,其中若存在,且在上有最大值,则的取值范围是 A.B.C.D.4.已知函数的图象在点处的切线与直线垂直,则等于A.B.C.D.5.设A、B、C是△ABC的三个内角,且sin2B+sin2C=sin2A+sinBsinC,则2sinBcosC–sin(B–C)的值为A.B.C.D.6.已知,,若,则△ABC是直角三角形的概率是A.B.C.D.7.对于任意的实数,

2、不等式恒成立,则实数的取值范围是A.;     B.;   C.;   D.;8.已知均为非零实数,集合,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.函数f:R→R,对任意的实数x,y,只要x+y≠0,就有f(xy)=成立,则函数f(x)(x∈R)的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数10、给出定义:若(其中m为整数),则m叫做离实数x最近的整数,记作=m.在此基础上给出下列关于函数的四个命题:9①函数y=的定义域为R,值域为;②函数y=的图像关于直线()对称;③函数y=是周期函数,最小正周期

3、为1;④函数y=在上是增函数。其中正确的命题的序号是()A.①    B. ②③   C①②③    D①④二、填空题:本大题共5小题,每小题5分,共25分.11.函数对于任意实数满足条件,若则12.命题“若x2<1,则-1<x<1”的逆否命题是.13.已知是以2为周期的偶函数,当时,,且在内,关于的方程有四个根,则得取值范围是14.对于函数,给出下列命题:①当时,在定义域上为单调增函数;②的图象的对称中心为;③对任意,都不是奇函数;④当时,为偶函数;⑤当时,对于满足条件的所有,总有。其中正确命题的序号为15.当时,恒成立,则实数的取值范围是三、解答题:本大题共6小题,共75分。16.

4、(本题满分12分)设函数,不等式的解集为.(1)求的值;(2)求不等式的解集.917.(本题满分12分)在△ABC中,角A、B、C的对边分别为,已知。设B=,△ABC的周长为。(1)求函数的解析式和定义域;(2)求的单调区间。18.(本小题满分12分)已知函数在处的切线与直线平行。(1)若函数有极值,求实数的取值范围.(2)是否存在实数a,使得的两个根满足,若存在,求实数a的取值范围;若不存在,请说明理由.19.(满分12分)已知函数的定义域为。(1)求;(2)当时,求的最小值。920.(满分13分)已知函数,其中为大于零的常数.(1)若函数在上单调递增,求的取值范围;(2)求函数在区

5、间上的最小值;(3)求证:对于任意的且时,都有成立.21.(本小题满分14分)已知在函数的图象上以N(1,n)为切点的切线的倾斜角为(1)求m、n的值;(2)是否存在最小的正整数k,使得不等式恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由;(3)求证:9龙泉中学2011届高三理科数学综合训练(10)参考答案一、选择题:1—5BBAAD6—10CABCC二、填空题:本大题共5小题,每小题5分,共25分.11.12.若x≥1或x≤-1,则x2≥1.1314.②③⑤15.三、解答题:本大题共6小题,共75分。16.解:(1)∵,即………1分由题设可得:,解得………4分(2)…

6、………6分由,得……8分则,即……11分∴原不等式的解集为…………12分17.解(1):△ABC的内角为A+B+C=由A=……………………2分由正弦定得知:…………4分9因为y=AB+BC+AC所以…………7分(2)因为…9分而当单调递增当单调递减…………………12分18.(1)数学…………1分学因为有极值,(*)数学…………2分又在处的切线与直线平行,数学代入(*)式得,,…………6分(2)假若存在实数a,使的两个根x1、x2满足,数学即的两个根x1、x2满足0

7、,得上恒成立,即上恒成立又当……………4分(2)当时,在(1,2)上恒成立,这时在[1,2]上为增函数,.当在(1,2)上恒成立,这时在[1,2]上为减函数,当时,令又……………7分综上,在[1,2]上的最小值为:①当②当时,③当.………9分(3)由(1),知函数上为增函数,当即恒成立,9恒成立.……13分21.解:(1)依题意,得∴∴………2分(2)令当在此区间为增函数当在此区间为减函数当在此区间为增函数处取得极大值………………5分又因此,当

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。