欢迎来到天天文库
浏览记录
ID:56534304
大小:160.00 KB
页数:14页
时间:2020-06-27
《《确定二次函数的表达式》课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、5.5确定二次函数的表达式1.二次函数表达式的一般形式是什么?二次函数表达式的顶点式是什么?3.若二次函数y=ax²+bx+c(a≠0)与x轴两交点为(x1,0),(x2,0)则其函数表达式可以表示成什么形式?y=ax²+bx+c(a,b,c为常数,a≠0)y=a(x-h)2+k(a≠0)y=a(x-x1)(x-x2)(a≠0)复习提问:如图,某建筑的屋顶设计成横截面为抛物线(曲线AOB)的薄壳屋顶.它的拱宽AB为6m,拱高CO为0.9m.试建立适当的直角坐标系,并写出这段抛物线所对应的二次函数表达式?解:以线段AB的中垂线为y轴,以过点O且
2、与y轴垂直的直线为x轴,建立直角坐标系.设它的函数表达式为:y=ax²(a≠0)例1.二次函数图象的顶点坐标是(-1,-6),并且经过点(2,3).求这个二次函数的表达式.解:因为这个二次函数的图象的顶点坐标为(-1,-6),因此,可以设函数表达式为又因为它的图象经过点(2,3),将这点代入上式得.解得所以,这个二次函数的表达式是:例2.一个二次函数的图象过(0,1),(2,4),(3,10)三点,求这个二次函数的表达式.解:设所求二次函数表达式为y=ax2+bx+c,由这个函数的图象过点(0,1),可得c=1.又由于其图象经过(2,4),(
3、3,10)两点,可得∴4a+2b+1=4,9a+3b+1=10.解这个方程组得因此,所求二次函数的表达式为:若二次函数图象过A(2,-4),B(0,2),C(-1,2)三点,求此函数的解析式.解:设二次函数表达式为y=ax2+bx+c∵图象过B(0,2)∴c=2∵图象过A(2,-4),C(-1,2)两点∴-4=4a+2b+22=a-b+2解得a=-1,b=-1.∴函数的解析式为:y=-x2-x+2.已知一个二次函数的图象经过点(4,-3),并且当x=3时有最大值4,试确定这个二次函数的解析式.解法1:(利用一般式)设二次函数解析式为:y=ax
4、2+bx+c(a≠0)由题意知解方程组得:a=-7b=42c=-59∴二次函数的解析式为:y=-7x2+42x-59.解法2:(利用顶点式)∵ 当x=3时,有最大值4∴顶点坐标为(3,4)设二次函数解析式为:y=a(x-3)2+4∵函数图象过点(4,-3)∴a(4-3)2+4=-3∴a=-7∴二次函数的解析式为:y=-7(x-3)2+4.二次函数y=ax2+bx+c的图象过点A(0,5),B(5,0)两点,它的对称轴为直线x=3,求这个二次函数的解析式.解:∵二次函数的对称轴为直线x=3∴设二次函数表达式为y=a(x-3)2+k图象过点A(0
5、,5),B(5,0)两点∴5=a(0-3)2+k0=a(5-3)2+k解得:a=1k=-4∴二次函数的表达式:y=(x-3)2-4即y=x2-6x+5.小结:已知顶点坐标(h,k)或对称轴方程x=h时优先选用顶点式.解:(交点式)∵二次函数图象经过点(3,0),(-1,0)∴设二次函数表达式为:y=a(x-3)(x+1)∵函数图象过点(1,4)∴4=a(1-3)(1+1)得a=-1∴函数的表达式为:y=-(x+1)(x-3)=-x2+2x+3.已知二次函数图象经过点(1,4),(-1,0)和(3,0)三点,求二次函数的表达式.知道抛物线与x轴
6、的两个交点的坐标,选用交点式比较简便其它解法:(一般式)设二次函数解析式为y=ax2+bx+c∵二次函数图象过点(1,4),(-1,0)和(3,0)∴a+b+c=4 ①a-b+c=0 ②9a+3b+c=0 ③解得:a=-1b=2c=3∴函数的解析式为:y=-x2+2x+3.(顶点式)解:∵ 抛物线与x轴相交两点(-1,0)和(3,0),∴∴点(1,4)为抛物线的顶点可设二次函数解析式为:y=a(x-1)2+4∵抛物线过点(-1,0)∴0=a(-1-1)2+4得a=-1∴函数的解析式为:y=-(x-1)2+4.谈谈你的
7、收获
此文档下载收益归作者所有