切线长定理用.ppt

切线长定理用.ppt

ID:56419870

大小:535.50 KB

页数:42页

时间:2020-06-17

切线长定理用.ppt_第1页
切线长定理用.ppt_第2页
切线长定理用.ppt_第3页
切线长定理用.ppt_第4页
切线长定理用.ppt_第5页
资源描述:

《切线长定理用.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、切线长定理如图,纸上有一⊙O,PA为⊙O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B。1.OB是⊙O的一条半径吗?2.PB是⊙O的切线吗?3.PA、PB有何关系?4.∠APO和∠BPO有何关系?数学探究PAOB问题:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做切线长。数学探究OBP··A·切线长和切线的区别和联系:切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。已知:求证:如图,P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,连结PO切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。O

2、BP··A·一、判断(1)过任意一点总可以作圆的两条切线()(2)从圆外一点引圆的两条切线,它们的长相等。练习(1)如图PA、PB切圆于A、B两点,连结PO,则度。PBOA二、填空25(3)如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8CM,则ΔPDE的周长为()AA16cmD8cmC12cmB14cmDCBEAP例2、如图,过半径为6cm的⊙O外一点P作圆的切线PA、PB,连结PO交⊙O于F,过F作⊙O切线分别交PA、PB于D、E,如果PO=10cm,求△PED的周长。FOEDPBA数学探究OBP··A·思考:连结A

3、B,则AB与PO有怎样的位置关系?为什么?你还能得出什么结论?E已知:如图PA、PB是⊙O的两条切线,A、B为切点。直线OP交⊙O于D、E,交AB于C。OPABCDE(1)图中互相垂直的关系有对,分别是(2)图中的直角三角形有个,分别是等腰三角形有个,分别是(3)图中全等三角形对,分别是(4)如果半径为3cm,PO=6cm,则点P到⊙O的切线长为cm,两切线的夹角等于度362360OPABCDE(5)如果PA=4cm,PD=2cm,试求半径OA的长。x即:解得:x=3cm半径OA的长为3cm例1、如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.(1)求∠AP

4、B的度数;(2)当OA=3时,求AP的长.PBAO随堂训练(2)观察OP与BC的位置关系,并给予证明。(1)若OA=3cm,∠APB=60°,则PA=______.PABCOM如图,AC为⊙O的直径,PA、PB分别切⊙O于点A、B,OP交⊙O于点M,连结BC。试一试:已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径。∠C=50,①求∠APB的度数②求证:AC∥OP。ABOCPAOBC试一试:如图1,一个圆球放置在V形架中。图2是它的平面示意图,CA和CB都是⊙O的切线,切点分别是A、B。如果⊙O的半径为cm,且AB=6cm,求∠ACB。思考:

5、当切点F在弧AB上运动时,问△PED的周长、∠DOE的度数是否发生变化,请说明理由。FOEDPBA(2)如图,ΔABC的内切圆分别和BC,AC,AB切于D,E,F;如果AF=2cm,BD=7cm,CE=4cm,则BC=cm,AC=AB=116cm9cmBDACFE274例3、已知四边形ABCD的边AB、BC、CD、DA分别与⊙O相切于P、Q、M、N,求证:AB+CD=AD+BC。DABCOMNPQ思考如图,一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?ID三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆三角形的内心:三角形的内切圆的圆

6、心叫做三角形的内心三角形的内心是三角形三条角平分线的交点,它到三角形三边的距离相等。数学探究DEFABDLMNPO结论:圆的外切四边形的两组对边和相等。已知:四边形ABCD的边AB,BC,CD,DA和圆O分别相切于L,M,N,P。探索圆外切四边形边的关系。C(1)找出图中所有相等的线段(2)填空:AB+CDAD+BC(>,<,=)=DN=DP,AP=AL,BL=BM,CN=CM比较圆的内接四边形的性质:圆的内接四边形:角的关系圆的外切四边形:边的关系练习四已知:△ABC是⊙O外切三角形,切点为D,E,F。若BC=14cm,AC=9cm,AB=13cm。求AF,BD,CE。

7、ABCDEFxxyyOzz解:设AF=Xcm,BD=Ycm,CE=Zcm则AE=AF=Xcm,DC=BD=Ycm,AE=EC=Zcm依题意得方程组x+y=13y+z=14x+z=9解得:Z=5X+y+z=18x+y=13已知:如图,⊙O是Rt△ABC的内切圆,∠C是直角,三边长分别是a,b,c.求⊙O的半径r.ABC●┗┏┓ODEF┗(1)Rt△的三边长与其内切圆半径间的关系13探究三求直角三角形内切圆的半径探究三求一般三角形内切圆的半径(2)已知:如图,△ABC的面积为S,三边长分别为a,b,c.求内切圆⊙O的半径r.●A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。