切线长定理(用)电子教案.ppt

切线长定理(用)电子教案.ppt

ID:59565711

大小:836.00 KB

页数:39页

时间:2020-11-11

切线长定理(用)电子教案.ppt_第1页
切线长定理(用)电子教案.ppt_第2页
切线长定理(用)电子教案.ppt_第3页
切线长定理(用)电子教案.ppt_第4页
切线长定理(用)电子教案.ppt_第5页
资源描述:

《切线长定理(用)电子教案.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、切线长定理(用)一、判断(1)过任意一点总可以作圆的两条切线()(2)从圆外一点引圆的两条切线,它们的长相等。练习(1)如图PA、PB切圆于A、B两点,连结PO,则度。PBOA二、填空25例.PA、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。BAPOCED(1)写出图中所有的垂直关系OA⊥PA,OB⊥PB,AB⊥OP(3)写出图中所有的全等三角形△AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP(4)写出图中所有的等腰三角形△ABP△AOB(5)若PA=4、PD=2,求半径OA(2)写出图中与∠OAC相等的

2、角∠OAC=∠OBC=∠APC=∠BPCAPO。B若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.CA=CB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴PC=PC∴△PCA≌△PCB∴AC=BCCAPO。BM若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分AB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴△PAB是等腰三角形,PM为顶角的平分线∴OP垂直平分AB(3)如图,PA、PB、DE分别切⊙O于A、B、C,DE

3、分别交PA,PB于D、E,已知P到⊙O的切线长为8CM,则ΔPDE的周长为()AA16cmD8cmC12cmB14cmDCBEAP例2、如图,过半径为6cm的⊙O外一点P作圆的切线PA、PB,连结PO交⊙O于F,过F作⊙O切线分别交PA、PB于D、E,如果PO=10cm,求△PED的周长。FOEDPBA例1、如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.PBAOOPABCDE(5)如果PA=4cm,PD=2cm,试求半径OA的长。x即:解得:x=3cm半径OA的长为3cm随堂

4、训练(2)观察OP与BC的位置关系,并给予证明。(1)若OA=3cm,∠APB=60°,则PA=______.PABCOM如图,AC为⊙O的直径,PA、PB分别切⊙O于点A、B,OP交⊙O于点M,连结BC。已知:如图PA、PB是⊙O的两条切线,A、B为切点。直线OP交⊙O于D、E,交AB于C。OPABCDE(1)图中互相垂直的关系有对,分别是(2)图中的直角三角形有个,分别是等腰三角形有个,分别是(3)图中全等三角形对,分别是(4)如果半径为3cm,PO=6cm,则点P到⊙O的切线长为cm,两切线的夹角等于度362360试一试:已知:如图,P为⊙

5、O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径。∠C=50,①求∠APB的度数②求证:AC∥OP。ABOCP(2)如图,ΔABC的内切圆分别和BC,AC,AB切于D,E,F;如果AF=2cm,BD=7cm,CE=4cm,则BC=cm,AC=AB=116cm9cmBDACFE274例.如图所示PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D,已知PA=7cm,(1)求△PCD的周长.(2)如果∠P=46°,求∠COD的度数C·OPBDAEAOBC试一试:如图1,一个圆球放置在V形架中。图2是它的平面示意图,CA和CB都是⊙

6、O的切线,切点分别是A、B。如果⊙O的半径为cm,且AB=6cm,求∠ACB。思考:当切点F在弧AB上运动时,问△PED的周长、∠DOE的度数是否发生变化,请说明理由。FOEDPBA例3、已知四边形ABCD的边AB、BC、CD、DA分别与⊙O相切于P、Q、M、N,求证:AB+CD=AD+BC。DABCOMNPQ思考如图,一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?ID练习四已知:△ABC是⊙O外切三角形,切点为D,E,F。若BC=14cm,AC=9cm,AB=13cm。求AF,BD,CE。ABCDEFxxyyOz

7、z解:设AF=Xcm,BD=Ycm,CE=Zcm则AE=AF=Xcm,DC=BD=Ycm,AE=EC=Zcm依题意得方程组x+y=13y+z=14x+z=9解得:Z=5X+y+z=18x+y=13已知:如图,⊙O是Rt△ABC的内切圆,∠C是直角,三边长分别是a,b,c.求⊙O的半径r.ABC●┗┏┓ODEF┗(1)Rt△的三边长与其内切圆半径间的关系13探究三求直角三角形内切圆的半径探究三求一般三角形内切圆的半径(2)已知:如图,△ABC的面积为S,三边长分别为a,b,c.求内切圆⊙O的半径r.●ABC●O●┗┓ODEF┗14小练习1.边长为3

8、、4、5的三角形的内切圆的半径为——2.边长为5、5、6的三角形的内切圆的半径为——3.已知:△ABC的面积S=4cm,周长等于10cm

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。