欢迎来到天天文库
浏览记录
ID:55753229
大小:31.50 KB
页数:5页
时间:2020-06-05
《等差数列及通项公式.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、等差数列及其通项公式周勇【内容分析】 本节课是《普通高中课程标准实验教科书·数学5》(人教A版)第二章数列第二节等差数列第一课时.数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.【教学目标】1.知识目标:理解等差数列定义,掌握等差数列的通项公式. 2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思
2、想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力. 3.情感目标:通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣. 【教学重点】①等差数列的概念;②等差数列的通项公式的推导过程及应用. 【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.【学情分析】 1.知识目标:理解等差数列定义,掌握等差数列的通项公式. 2.能力目标:培养学生观察、归纳能力,在学习过程中,体
3、会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力. 3.情感目标:通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.【设计思路】 1.教法 ①诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,
4、突破难点. 2.学法引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.用多种方法对等差数列的通项公式进行推导.在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清.【教学过程】教学内容问题预设师生互动预设意图 创设情景,提出问题 问题提出:1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么? 2
5、.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列? 3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列? 教师:以上三个
6、问题中的数蕴涵着三列数.学生:1:0,5,10,15,20,25,…. 2:18,15.5,13,10.5,8,5.5. 3:10072,10144,10216,10288,10360. 从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力. 观察归纳,形成定义 ①0,5,10,15,20,25,….②18,15.5,13,10.5,8,5.5.③10072,10144,10216,10288,10
7、360. 思考1上述数列有什么共同特点? 思考2根据上数列的共同特点,你能给出等差数列的一般定义吗? 思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同
8、特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达. 举一反三,理解定义 练一练:判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1; (2)1
此文档下载收益归作者所有