劳动部34教练式经理特训营.doc

劳动部34教练式经理特训营.doc

ID:55658914

大小:82.50 KB

页数:6页

时间:2020-05-23

劳动部34教练式经理特训营.doc_第1页
劳动部34教练式经理特训营.doc_第2页
劳动部34教练式经理特训营.doc_第3页
劳动部34教练式经理特训营.doc_第4页
劳动部34教练式经理特训营.doc_第5页
资源描述:

《劳动部34教练式经理特训营.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、AI在未来如何实现真正的“智能”?人工智能要继续前进,到底要不要模仿大脑?  AI在未来如何实现真正的“智能”?这个问题似乎遭遇瓶颈。目前深度学习对人类大脑的模拟仍然处于初级阶段,是否应该沿这条路继续走下去?吴恩达认为,通过深度学习模拟大脑,未来的AI能够比人类更快地完成精神层面的任务。也有研究人员认为,应从大自然中寻找灵感,让AI建立关于世界的“心理模型”。  现在,我们已经将AI技术应用在自动驾驶和医疗上,甚至10多亿中国公民的社会信用评分都可以依靠AI技术,现在我们已经在讨论如何让AI学会自己不会做的事情。AI技术曾经仅仅是一个学术问题,而现在已经成为高达数

2、十亿美元的人才和基础设施的产业,而且关系到人类的未来。  关于这个问题的讨论焦点是,目前构建AI的是否足够。我们能够通过对现有技术的调整,利用足够强大的计算力,来实现被认为仅存在于人和动物身上的真正的“智能”?  关于这个问题,辩论的一方是“深度学习”的支持者-AI在未来如何实现真正的“智能”?人工智能要继续前进,到底要不要模仿大脑?  AI在未来如何实现真正的“智能”?这个问题似乎遭遇瓶颈。目前深度学习对人类大脑的模拟仍然处于初级阶段,是否应该沿这条路继续走下去?吴恩达认为,通过深度学习模拟大脑,未来的AI能够比人类更快地完成精神层面的任务。也有研究人员认为,应

3、从大自然中寻找灵感,让AI建立关于世界的“心理模型”。  现在,我们已经将AI技术应用在自动驾驶和医疗上,甚至10多亿中国公民的社会信用评分都可以依靠AI技术,现在我们已经在讨论如何让AI学会自己不会做的事情。AI技术曾经仅仅是一个学术问题,而现在已经成为高达数十亿美元的人才和基础设施的产业,而且关系到人类的未来。  关于这个问题的讨论焦点是,目前构建AI的是否足够。我们能够通过对现有技术的调整,利用足够强大的计算力,来实现被认为仅存在于人和动物身上的真正的“智能”?  关于这个问题,辩论的一方是“深度学习”的支持者-自2012年多伦多大学三位研究人员的一篇具有里

4、程碑意义的论文以来,深度学习已经大受欢迎。虽然它远非人工智能的唯一方法,但已经证明了我们能够实现以前的技术无法实现的成就。  “深度学习”中的“深度”是指其网络中人工神经元的层数。生物学上的“神经元”一样,具有更多层神经元的人工神经系统能够进行更复杂的学习。  吴恩达:模拟人脑,未来AI完成精神层面任务只需几秒  要理解人工神经网络,可以想象一下空间中的一堆点,就像我们大脑中的神经元一样。调整这些点之间连接的强度,就是在大致模拟大脑学习时发生的事情。模拟结果产生一幅神经连接图,图中包括达到期望结果(比如正确识别出图像)的最佳途径。  今天的深度学习系统还达不到我们

5、的大脑的复杂度。它们充其量看起来就像视网膜的外表面,只有少数几层神经元对图像进行初始处理。  这种网络不太可能胜任我们大脑能完成的所有任务。因为它们并不能像真正的“智能”生物那样了解世界,所以网络显得很脆弱,容易造成混淆。比如,研究人员能够只改变图像中的单个像素,就可以成功欺骗流行的图像识别算法。  尽管存在局限性,深度学习还是为研发图像和语音识别、机器翻译和棋类游戏中击败人类的黄金标准软件提供了强大动力。深度学习是谷歌研发定制化AI芯片和这些利用这些芯片运行的AI云服务的动力,Nvidia的自动驾驶汽车技术也是如此。    吴恩达  人工智能领域中最具影响力的人

6、之一、曾在谷歌大脑工作并担任百度前人工智能首席科学家的吴恩达表示,通过深度学习,计算机应该能够完成普通人在一秒或几秒内就能完成的任何精神层面的任务。而且计算机的完成速度甚至可以比人类更快。  推进AI需要从大自然中寻找灵感  而这场讨论中同样有研究人员持相反观点,比如Uber公司人工智能部门的前负责人、现纽约大学教授GaryMarcus认为深度学习远不足以完成我们能够完成的各种事情。他认为,深度学习永远无法取代全部的白领工作,无法引领我们走向全自动化的、“奢侈化共产主义”的辉煌未来。  Marcus博士表示,要获得“通用智能”需要具备推理能力,能够自己学习,建立关

7、于世界的心理模型,这些都超出了现在AI的能力。  “目前我们利用深度学习取得了很多里程碑式的成就,但这并不意味着深度学习是建立思维理论或抽象推理的正确工具。”马库斯博士说。  为了进一步推进人工智能,“我们需要从大自然中获取灵感。”Marcus博士说。也就是说要建立其他类型的人工神经网络,并在某些情况下为其提供与生俱来的预编程的知识,就像所有生物都具备的天生本能一样。    纽约大学教授GaryMarcus  研究人员还在努力让AI建立关于世界的心理模型,一般婴儿在一岁时就能建立这种模型了。因此,就算一个AI系统已经见过一百万张校车的图片,但当它第一次见到一辆翻车

8、的校车时,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。