学案 相交线与平行线(2).doc

学案 相交线与平行线(2).doc

ID:55422002

大小:471.50 KB

页数:11页

时间:2020-05-12

学案   相交线与平行线(2).doc_第1页
学案   相交线与平行线(2).doc_第2页
学案   相交线与平行线(2).doc_第3页
学案   相交线与平行线(2).doc_第4页
学案   相交线与平行线(2).doc_第5页
资源描述:

《学案 相交线与平行线(2).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、教师:学生:年级:初一(下)科目:数学时间:年月日课次:二、教学过程一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。平行线:在同一平面内,不相交的两条直线叫做平行线。余角:如果两个角的和是直角,那么称这两个角互为余角.补角:如果两个角的和是平角,那.么称这两个角互为补角.经典考题

2、剖析:1.已知:∠A=30○,则∠A的补角是________度.2.如图l-2-1,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2=45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′针对性训练:(30分钟)1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛

3、A的方向为北偏东32○,那么从A处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=_8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是____________10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的,求∠A+∠B+∠C的度数.11.如图如图

4、1―2―3,已知∠AOC与∠BOD都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠AOB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。内错角:∠2与∠6像这样的一对角叫做内错角。同旁内角:∠2与∠5像这样的一对角叫做同旁内角。命题:判断一件事情的语句叫命题。平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的

5、,这样的两个点叫做对应点。定理与性质对顶角的性质:对顶角相等。垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质:性质1:两直线平行,同位角相等。性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。经典考题剖析:1.如图1―2―4,直线a∥b,则∠ACB=________2.如图1―2―5,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,交CD于点G,

6、∠1=50○求∠2的度数.针对性训练:(40分钟)1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。A.4个B.3个C.2个D.1个3.如果两个角的一边在同一条直线上,另一条边互相平行,那么这两个角只能()A.相等B.互补C.相等或互补D.相等且互补4.如图l-2-7,AB∥CD,若∠ABE=130○,∠CDE=1

7、52○,则∠BED=________5.对于同一平面内的三条直线a,b,c,总结出下列五个论断:①a∥b,②b∥c,③a⊥b,④a∥c,⑤a⊥c;以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题:________________.6.如图l-2-8,AB∥EF∥DC,EG∥BD,则图中与∠1相等的角共有()A.6个B.5个C.4个D.2个8.一个角的两边和另一个角的两边分别平行,而一个角比另一个角的3倍少3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。