函数y=asin(ωx+φ)的图象教案(1)

函数y=asin(ωx+φ)的图象教案(1)

ID:5533088

大小:25.00 KB

页数:5页

时间:2017-12-17

函数y=asin(ωx+φ)的图象教案(1)_第1页
函数y=asin(ωx+φ)的图象教案(1)_第2页
函数y=asin(ωx+φ)的图象教案(1)_第3页
函数y=asin(ωx+φ)的图象教案(1)_第4页
函数y=asin(ωx+φ)的图象教案(1)_第5页
资源描述:

《函数y=asin(ωx+φ)的图象教案(1)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、函数y=asin(ωx+φ)的图象教案(1)§8函数=Asin(ωx+φ)的图象一、教学目标:1、知识与技能(1)熟练掌握五点作图法的实质;(2)理解表达式=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(3)理解振幅变换和周期变换的规律,会对函数=sinx进行振幅和周期的变换;(4)会利用平移、伸缩变换方法,作函数=Asin(ωx+φ)的图像;()能利用相位变换画出函数的图像。2、过程与方法通过学生自己动手画图像,使他们知道列表、描点、连线是作图的基本要求;通过在同一个坐标平面内对比相关的几个函数图像,发现规律,总结提练,加以应用;要求学生能利用五点作图法,正确作出

2、函数=Asin(ωx+φ)的图像;讲解例题,总结方法,巩固练习。3、情感态度与价值观通过本节的学习,渗透数形结合的思想;树立运动变化观点,学会运用运动变化的观点认识事物;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。二、教学重、难点重点:相位变换的有关概念,五点法作函数=Asin(ωx+φ)的图像难点:相位变换画函数图像,用图像变换的方法画=Asin(ωx+φ)的图像三、学法与教学用具在前面,我们知道精确度要求不高时,可以用五点作图法,是哪五个关键点;首先请同学们回忆,然后通过物理学中

3、的几个情境引入题;主要让学生动手实践,两节尽可能多地让他们画图,教师只是加以点拨;可以从几个具体的、简单的例子开始,在适当的时候加以推广;先分解各个小知识点,再综合在一起,上升更高一层。教学用具:投影机、三角板第一时=sinx和=Asinx的图像,=sinx和=sin(x+φ)的图像一、教学思路【创设情境,揭示题】在物理和工程技术的许多问题中,经常会遇到形如=Asin(ωx+φ)的函数,例如:在简谐振动中位移与时间表的函数关系就是形如=Asin(ωx+φ)的函数。正因为此,我们要研究它的图像与性质,今天先学习它的图像。【探究新知】例一.画出函数=2sinxx

4、;R;=sinxxR的图象(简图)。解:由于周期T=2ɤ∴不妨在[0,2ɤ]上作图,列表:x0ɤ2ɤsinx010-102sinx020-20sinx00-0配套练习:函数=sinx的图像与函数=sinx的图像有什么关系?引导,观察,启发:与=sinx的图象作比较,结论:1.=Asinx,xR(A>0且A᠒1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原的A倍得到的。2.若A<0可先作=-Asinx的图象,再以x轴为对称轴翻

5、折。性质讨论:不变的有定义域、奇偶性、单调区间与单调性、周期性变化的有值域、最值。由上例和练习可以看出:在函数=Asinx(A>0)中,A决定了函数的值域以及函数的最大值和最小值,通常称A为振幅。例二.画出函数=sin(x+)(xR)和=sin(x᠄)(xR)的图像(简图)。解:由于周期T=2ɤ∴不妨在[0,2ɤ]上作图,列表:x+0ɤ2ɤx᠄sin(x+)010-10配套练习:函数=sin(x-)的图像与函数=sinx的图像有什么关系?引导,观察,启发:与=sinx的图象作比

6、较,结论:=sin(x+φ),xR(φ᠒0)的图象可以看作把正数曲线上的所有点向左平移φ(φ>0)个单位或向右平移-φ个单位(φ<0=得到的。性质讨论:不变的有定义域、值域、最值、周期变化的有奇偶性、单调区间与单调性由上例和练习可以看出:在函数=sin(x+φ),xR(φ᠒0)中,φ决定了x=0时的函数,通常称φ为初相,x+φ为相位。【巩固深化,发展思维】堂练习:二、归纳整理,整体认识(1)请学生回顾本节所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节的学习过程中,还有那些不太明白的地方,请

7、向老师提出。(3)你在这节中的表现怎样?你的体会是什么?三、后反思

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。