资源描述:
《数字逻辑与数字系统(第四版)课后答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.00110
2、00100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式ABCX00000010010001111000101111011111X=ABC+ABC+ABC+ABC5.求下列函数的值当A,B,C为0,1,0时:AB+BC=1(A+B+C)(A+B+C)=1(AB+AC)B=1当A,B,C为1,1,0时:AB+BC=0(A+B+C)(A+B+C)=1(AB+AC)B=1当A,B,C为1,0,1时:AB+BC=0(A+B+C)(A+B+C)=1(AB+AC)B=06.用真值表证明下列恒等
3、式(1)(AB)C=A(BC)ABC(AB)CA(BC)0000000111010110110010011101001100011111所以由真值表得证。(2)ABC=ABCABCABCABC00011001000100001111100001011111011111007.证明下列等式(1)A+AB=A+B证明:左边=A+AB=A(B+B)+AB=AB+AB+AB=AB+AB+AB+AB=A+B=右边(2)ABC+ABC+ABC=AB+AC证明:左边=ABC+ABC+ABC=ABC+ABC+ABC+ABC=AC(B+B)+AB(C+C)=AB+
4、AC=右边(3)AABCACD(CD)E=A+CD+E证明:左边=AABCACD(CD)E=A+CD+ABC+CDE=A+CD+CDE=A+CD+E=右边(4)ABABCABC=ABACBC证明:左边=ABABCABC=(ABABC)ABCABC=ABACBC=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+ABC+CB+CB=A+BC+CB(2)F=(A+B+C)(A+B+C)=(A+B)+CC=A+B(3)F=ABCD+ABD+BCD+ABCD+BC=AB+BC+BD(4)F=ACABCBCABC=BC(5)F=(
5、AB)(AB)(AB)(AB)=AB9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)FACABCBCABCABC000111100111110000化简得F=C(2)FABCDABCDABADABCABCD0001111000110111111011化简得F=ABAD(3)F(A,B,C,D)=∑m(0,1,2,5,6,7,8,9,13,14)ABCD00011110001101111111110111化简得F=CDBC
6、ABCACDBCD(4)F(A,B,C,D)=∑m(0,13,14,15)+∑(1,2,3,9,10,11)ABCD0001111000101Φ1Φ11Φ1Φ10Φ1Φ化简得F=ABADAC11.利用与非门实现下列函数,并画出逻辑图。(1)F=ABCABC=AC1F<=(Anand(notC))nand1AC1(2)F=(AB)(CD)=(AB)(CD)ABCD(3)F(A,B,C,D)=∑m(0,1,2,4,6,10,14,15)=(CD)(AD)(ABC)(ABC)CDADABCABC12.已知逻辑函数XABBCCA,试用以下方法表示该函数真值表:A
7、BCX00000011010101111001101111011110卡诺图:ABC0001111001111111逻辑图:ABBCCA波形图ABCFVHDL语言X<=(AandnotB)or(BandnotC)or(candnotA)13.根据要求画出所需的逻辑电路图。ABXCY(a)AXBCY(b)14..画出F1,F2的波形ABF1F2AABBCCF1解:F2F1=A⊕BF2=F1⊕C第二章组合逻辑1.分析图中所示的逻辑电路,写出表达式并进行化简ABFF=AB+B=ABABFCF=AB