第--9讲-(学生2份)--正方形专题培优训练初二.doc

第--9讲-(学生2份)--正方形专题培优训练初二.doc

ID:52863837

大小:430.50 KB

页数:14页

时间:2020-03-31

第--9讲-(学生2份)--正方形专题培优训练初二.doc_第1页
第--9讲-(学生2份)--正方形专题培优训练初二.doc_第2页
第--9讲-(学生2份)--正方形专题培优训练初二.doc_第3页
第--9讲-(学生2份)--正方形专题培优训练初二.doc_第4页
第--9讲-(学生2份)--正方形专题培优训练初二.doc_第5页
资源描述:

《第--9讲-(学生2份)--正方形专题培优训练初二.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第9讲正方形的性质和判定一.知识要点:1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质:①边的性质:对边平行,四条边都相等.②角的性质:四个角都是直角.③对角线性质:两条对角线互相垂直平分且相等,每条对角线平分一组对角.④对称性:正方形是中心对称图形,也是轴对称图形.平行四边形、矩形、菱形和正方形的关系:(如图)3.正方形的判定判定①:有一组邻边相等的矩形是正方形.判定②:有一个角是直角的菱形是正方形.例题讲解例1、如图(*),四边形ABCD是正方形

2、,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EM.∵∠AEF=90°∴∠FEC+∠AEB=90°又∵∠EAM+∠AEB=90°∴∠EAM=∠FE

3、C∵点E,M分别为正方形的边BC和AB的中点∴AM=EC又可知△BME是等腰直角三角形∴∠AME=135°又∵CF是正方形外角的平分线∴∠ECF=135°∴△AEM≌△EFC(ASA)∴AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由

4、.14例2.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3,求AG,MN的长.14练习.选择题(共6小题)1.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在

5、y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.B.C.D.2.如图,边长为a的正方形ABCD绕点A逆时针旋转30°得到正方形A′B′C′D′,图中阴影部分的面积为()A.a2B.a2C.(1﹣)a2D.(1﹣)a23.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,且G为BC的三等分点,R为EF中点,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.164.将n个边

6、长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积和为()A.cm2B.cm2C.cm2D.cm25.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()14A.4B.5C.6D.7二.填空题(共6小题)1.如图,P是正方形ABCD内一点,将△ABC绕点B顺时针方向旋转能与△CBP′重合,若PB=3,则PP′=.2.如图所示,两个正方形的边长分别为a和b,如果a+b=

7、10,ab=20,那么阴影部分的面积是20.3.已知,如图,在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于点E、F,若AE=4,CF=3,则四边形OEBF的面积为.4.如图,A在线段BG上,ABCD和DEFG都是正方形,面积分别为7平方厘米和11平方厘米,则△CDE的面积等于平方厘米.5.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的序号是.6.如图

8、,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。