欢迎来到天天文库
浏览记录
ID:50808468
大小:394.13 KB
页数:12页
时间:2020-03-14
《2017华师版八年级数学数的开方教案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第12章数的开方12.1平方根与立方根(1)知识技能目标1.从实际问题的需要出发,引进平方根概念,体现从实际到理论、具体到抽象这样一个一般的认识过程,培养学生辩证唯物主义观点;2.从求二次幂的平方运算引出求平方根的运算,突出平方运算和开平方运算的互逆性;3.扣住定义去思考问题,重视解题技巧;4.以旧引新,以新带旧,从旧知识引进新知识,讲新知识时尽可能复习一些旧知识.教学重点与难点通过实际问题的研究,认识平方根;正确区分平方根与算术平方根的关系;会用计算器求任意正数的算术平方根。教学过程一、创设情境问题1要剪出
2、一块面积为25cm2的正方形纸片,纸片的边长应是多少?问题2已知圆的面积是16πcm2,求圆的半径长.(学生探索,回答问题)二、探究归纳问题1解设正方形纸片的边长为xcm,依题意有:x2=25,求出满足x2=25的x值,就可得正方形纸片的边长.因52=25,(-5)2=25,故满足x2=25的x的值可以是5,也可以是-5,但正方形边长只能取正值.所以x=5.答正方形纸片的边长为5cm.这个问题实质上就是要找一个数,这个数的平方等于25.问题2解设圆的半径为Rcm,依题意有:πR2=16π,即R2=16,求出满
3、足R2=16的R的值即可求出圆的半径.因42=16,(-4)2=16,故满足R2=16的R的值为4或-4,但圆的半径只能取正值.所以数R=4.答圆的半径为4cm.这个问题实质上就是要找一个数,这个数的平方等于16.刚才具体的二个例子,从数学意义上都是要解决这样一个共同的问题:已知某数的平方,要求这个数.用式子来表示就是如果x2=a,求x的值.概括如果一个数的平方等于a,那么这个数叫做a的平方根(squareroot)(也叫a的二次方根).在上述例1问题中,因为52=25,所以5是25的一个平方根.又因为(-5
4、)2=52=25,所以-5也是25的一个平方根.这就是说,25的平方根有两个:5与-5. 在上述例2问题中,因为42=16,所以4是16的一个平方根.又因为(-4)2=42=16,所以-4也是16的一个平方根.这就是说,16的平方根有两个:4与-4. 所以,根据平方根的意义,我们可以利用平方来检验或寻找一个数的平方根.三、实践应用例1求100的平方根.解因为102=100,(-10)2=100,除了10和-10以外,任何数的平方都不等于100,所以100的平方根是10和-10,也可以说,100的平方根是±
5、10.学生试一试:(1)144的平方根是什么?(2)0的平方根是什么?(3)的平方根是什么?(4)-4有没有平方根?为什么?请学生也编三道求平方根的题目,并给出解答.与同学交流,你发现了什么?1.平方根的性质:问(1)正数的平方根是什么?.问(2)0的平方根是什么?问(3)负数有平方根吗?为什么?请同学概括数的平方根的性质.答一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.2.一个非负数a的平方根的表示法.3.开平方.求一个数a(a≥0)的平方根的运算,叫做开平方.例2将下列
6、各数开平方:(1)49,(2)1.69.分析开方运算就是求平方根,我们可以通过平方运算来解决.例3下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由.(1)-64;(2)0;(3)(-4)2.分析因为只有正数和零才有平方根,所以首先应观察所给出的数是否为正数或0.四、交流反思1.一般地,如果=a,那么叫做a的平方根.(也叫a的二次方根).当a=0时,a有一个平方根,就是它本身;负数没有平方根.2.求一个数a的平方根的运算,叫做开平方,平方和开平方运算有区别又有联系.区别在于,平方运算中,已知的是
7、底数和指数,求的是幂;而在开平方运算中,已知的是指数和幂,求的是底数.在平方运算中的底数可以是任意数,平方的结果是唯一的;在开平方运算中,被开方数必须是非负数,开平方的结果不一定是唯一的.3.平方和开平方运算又有联系,二者互为逆运算.4.求一个数的平方根,可以通过平方运算来解决.五、作业P4112.1平方根与立方根(2)知识技能目标1.引导学生建立清晰的概念系统,在学生正确理解平方根的概念的意义和平方根的表示方法基础上,专门讨论算术平方根的概念及其表示方法;2.对于表示的算术平方根中的a的条件和的本身的意义作
8、合理性的说明,例如:面积为a(a>0)的正方形的边长为,从而直观形象地说明算术平方根约定的合理性;3.针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.教学重点与难点1.理解算术平方根的概念,掌握它的求法及表示方法;2.体会到平方根和算术平方根这两个概念的联系和区别,进一步熟练地进行平方根与算术平方根的运算;3.用计
此文档下载收益归作者所有