2021版高考数学一轮复习 第八章 平面解析几何 8.4 直线与圆、圆与圆的位置关系教学案 苏教版.doc

2021版高考数学一轮复习 第八章 平面解析几何 8.4 直线与圆、圆与圆的位置关系教学案 苏教版.doc

ID:50648830

大小:408.50 KB

页数:10页

时间:2020-03-13

2021版高考数学一轮复习 第八章 平面解析几何 8.4 直线与圆、圆与圆的位置关系教学案 苏教版.doc_第1页
2021版高考数学一轮复习 第八章 平面解析几何 8.4 直线与圆、圆与圆的位置关系教学案 苏教版.doc_第2页
2021版高考数学一轮复习 第八章 平面解析几何 8.4 直线与圆、圆与圆的位置关系教学案 苏教版.doc_第3页
2021版高考数学一轮复习 第八章 平面解析几何 8.4 直线与圆、圆与圆的位置关系教学案 苏教版.doc_第4页
2021版高考数学一轮复习 第八章 平面解析几何 8.4 直线与圆、圆与圆的位置关系教学案 苏教版.doc_第5页
资源描述:

《2021版高考数学一轮复习 第八章 平面解析几何 8.4 直线与圆、圆与圆的位置关系教学案 苏教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四节 直线与圆、圆与圆的位置关系[最新考纲] 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想.1.判断直线与圆的位置关系常用的两种方法(1)三种位置关系:相交、相切、相离.(2)两种研究方法:2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r(r1>0),圆O2:(x-a2)2+(y-b2)2=r(r2>0).位置关系几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程

2、组的解的情况外离d>r1+r2无解外切d=r1+r2一组实数解相交

3、r1-r2

4、

5、r1-r2

6、(r1≠r2)一组实数解内含0≤d<

7、r1-r2

8、(r1≠r2)无解1.当两圆相交(切)时,两圆方程(x2,y2项的系数相同)相减便可得公共弦(公切线)所在的直线方程.2.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)

9、(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y-10-=r2.一、思考辨析(正确的打“√”,错误的打“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(  )(2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(  )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(  )(4)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是

10、x0x+y0y=r2.(  )[答案](1)× (2)× (3)× (4)√二、教材改编1.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是(  )A.[-3,-1]   B.[-1,3]C.[-3,1] D.(-∞,-3]∪[1,+∞)C [由题意可得,圆的圆心为(a,0),半径为,∴≤,即

11、a+1

12、≤2,解得-3≤a≤1.]2.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为(  )A.内切B.相交C.外切D.相离B [两圆圆心分别为(-2,0),(2,1),半径分别为

13、2和3,圆心距d==.∵3-2

14、法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交,上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.(1)[一题多解]直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是(  )A.相交        B.相切C.相离D.不确定(2)若直线x+my=2+m与圆x2+y2-2x-2y+1=0相交,则实数m的取值范围为(  )A.(-∞,+∞)B.(-∞,0)C.(0,+∞)D.(-∞,0)∪(0,+

15、∞)(3)圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点的个数为(  )A.1    B.2C.3    D.4(1)A (2)D (3)C [(1)法一:(代数法)由消去y,整理得(1+m2)x2-2m2x+m2-5=0,因为Δ=16m2+20>0,所以直线l与圆相交.法二:(几何法)∵圆心(0,1)到直线l的距离d=<1<.故直线l与圆相交.法三:(点与圆的位置关系法)直线l:mx-y+1-m=0过定点(1,1),∵点(1,1)在圆C:x2+(y-1)2=5的内部,∴直线l与圆C相交.(2

16、)圆的标准方程为(x-1)2+(y-1)2=1,圆心C(1,1),半径r=1.因为直线与圆相交,所以d=0或m<0.故选D.(3)如图所示,因为圆心到直线的距离为=2,又因为圆的半径为3,所以直线与圆相交,故圆上到直线的距离为1的点有3个.]-10-(1)已知直线与圆的位置关系求参数值

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。