欢迎来到天天文库
浏览记录
ID:50533601
大小:1.40 MB
页数:36页
时间:2020-03-14
《三角形的中位线经典ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、平行四边形的判定1判定文字语言图形语言符号语言定义两组对边分别平行的四边形是平行四边形∵AB∥CD,AD∥BC∴…是平行四边形定理1两组对边分别相等的四边形是平等四边形∵AB=CD,AD=BC∴…是平行四边形定理2对角线互相平分的四边形是平行四边形∵OA=OC,OB=OD∴…是平行四边形推论两组对角分别相等的四边形是平行四边形∵∠A=∠C,∠B=∠D∴…是平行四边形ABCDABCDABCDABCDO2从边来判定1、两组对边分别平行的四边形是平行四边形2、两组对边分别相等的四边形是平行四边形3、一组对边平行且相等的四边形是平行四边形从角来判定两组对角分别相等的四边形是平行四边形从对角
2、线来判定两条对角线互相平分的四边形是平行四边形平行四边形的判定方法温故知新3平行四边形的面积(1)如图,(2)同底(等底)同高(等高)的平行四边形面积相等。4练习:2、如图,在□ABCD中,AE⊥BC于E,AF⊥CD于F,∠ADC=60°,BE=2,CF=1.求△DEC的面积.5练习:3、如图,O是□ABCD的对角线AC的中点,过点O的直线EF分别交AB、CD于E、F两点.求证:四边形AECF是平行四边形.6练习:4、如图,AC是□ABCD的一条对角线,BM⊥AC,ND⊥AC,垂足分别是M、N.求证:四边形BMDN是平行四边形.7回顾与联想:□ABCD(1)AB∥CD,BC∥AD(
3、2)AB=CD,BC=AD(4)∠A=∠C,∠B=∠D(5)AO=OC,BO=OD(3)AB∥CD,AB=CDABCDO平行四边形的判定方法8现有一张三角形纸片,你能通过裁剪,将它拼成一个平行四边形吗?创设情境问题1:需要把三角形剪成几块?问题2:如何将剪开的部分拼成一个平行四边形?ABCDEADEF9ABCDEF∵DE=EF、∠AED=∠CEF、AE=EC∴△ADE≌△CFE证明:如图,延长DE到F,使EF=DE,连结CF.∴AD=FC、∠A=∠ECF∴AB∥FC又AD=DB∴BD∥CF且BD=CF所以,四边形BCFD是平行四边形还有另外的证法吗?∴DF∥BC,DF=BC又∵即D
4、E∥BC例1、如图,点D、E分别是△ABC的边AB、AC的中点,求证DE∥BC且DE=BC位置关系数量关系2DE=BC10FE连结三角形两边中点的线段叫三角形的中位线。思考:1、一个三角形有几条中位线?2、这三条中位线把三角形分成几个三角形?ABCD例如:DE是△ABC的中位线三角形的中位线定义:3条四个11三角形的中位线与三角形的中线有什么区别?思考:中位线是两条边中点的连线,而中线是一个顶点和对边中点的连线。121、如图在等边△ABC中,AD=BD,AE=EC,BCDEA⑴△ADE是什么三角形?⑶DE与BC有什么样关系?等边三角形请思考!∴DEBC一般的三角形的中位线与第三边也
5、存在这样的关系吗?⑵DE是△ABC的什么线?中位线13ABCDEF又∵DE=EF∠1=∠2∴△ADE≌△CFE证明:如图,延长DE到F,使EF=DE,连结CF.∴AD=FC、∠A=∠ECF∴AB∥FC又AD=DB∴BD∥CF且BD=CF∴四边形BCFD是平行四边形还有另外的证法吗?∴DF∥BC,DF=BC又∵即DE∥BC例4、已知:在△ABC中,DE是△ABC的中位线求证:DE∥BC,且DE=BC。12⌒⌒∵点E是AC的中点∴AE=EC14ABCEDF证明:如图,延长DE至F,使EF=DE,连接CD、AF、CF∵AE=ECDE=EF∴四边形ADCF是平行四边形∴ADFC又∵D为AB
6、中点,∴DBFC∴四边形BCFD是平行四边形∴DE=BC//又DEDF∴DE∥BC∴DE=BC∥15CEDFBA证法三:过点C作AB的平行线交DE的延长线于F∵CF∥AB,∴∠A=∠ECF又AE=EC,∠AED=∠CEF∴△ADE≌△CFE∴AD=FC又DB=AD,∴DB=FC∥∴四边形BCFD是平行四边形∴DE//BC且DE=EF=1/2BC16三角形中位线定理三角形的中位线平行于第三边,且等于第三边的一半。CABDE用符号语言表示∵DE是△ABC的中位线∴DE∥BC,DE=BC.21(数量关系)(位置关系)归纳:主要用途:(1)证明平行(2)证明一条线段是另一条线段的2倍或17
7、2.如图:在△ABC中,DE是中位线。(1)若∠ADE=60°,则∠B=;(2)若BC=8cm,则DE=cm.(3)DE+BC=12cm,则BC=60°4DEABCD8cm6cm巩固新知:1.三角形的中位线_______第三边,并且______第三边的_______平行于等于一半3.若等腰△ABC的周长40cm,AB=AC=14cm,则中位线DE=184.如图,MN为△ABC的中位线,若∠ABC=61°则∠AMN=,若MN=12,则BC=.AMBCN61°245.如图
此文档下载收益归作者所有