资源描述:
《复数代数形式的加减运算及其几何意义(教案).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新授课:3.2.1复数代数形式的加减运算及其几何意义教学目标重点:复数代数形式的加法、减法的运算法则.难点:复数加法、减法的几何意义.知识点:.掌握复数代数形式的加、减运算法则;.理解复数代数形式的加、减运算的几何意义.能力点:培养学生渗透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力.教育点:通过探究学习,培养学生互助合作的学习习惯,培养学生对数学探索和渴求的思想.在掌握知识的同时,形成良好的思维品质和锲而不舍的钻研精神.自主探究点:如何运用复数加法、减法的几何意义来解决问题.考试点:会计算复数的和与差;能用复数加、减法的几何意义解决简单问题.易错易混点
2、:复数的加法与减法的综合应用.拓展点:复数与其他知识的综合.一、引入新课复习引入.虚数单位:它的平方等于,即;.对于复数:当且仅当时,是实数;当时,为虚数;当且时,为纯虚数;当且仅当时,就是实数..复数集与其它数集之间的关系:.复数复平面内的点一一对应.复数几何意义:一一对应复数复平面内的向量我们把实数系扩充到了复数系,那么复数之间是否存在运算呢?答案是肯定的,这节课我们就来研究复数的加减运算.【设计意图】通过复习回顾复数概念、几何意义等相关知识,使学生对这一知识结构有个清醒的初步认知,逐渐过渡到对复数代数形式的加减运算及其几何意义的学习情境,为探究本节课的新知识作铺垫.二、探究
3、新知8探究一:复数的加法.复数的加法法则我们规定,复数的加法法则如下:设,是任意两个复数,那么:提出问题:()两个复数的和是个什么数,它的值唯一确定吗?()当时,与实数加法法则一致吗?()它的实质是什么?类似于实数的哪种运算方法?学生明确:()仍然是个复数,且是一个确定的复数;()一致;()实质是实部与实部相加,虚部与虚部相加,类似于实数运算中的合并同类项.【设计意图】加深对复数加法法则的理解,且与实数类比,了解规定的合理性:将实数的运算通性、通法扩充到复数,有利于培养学生的学习兴趣和创新精神..复数加法的运算律实数的加法有交换律、结合律,复数的加法满足这些运算律吗?对任意的,有
4、(交换律),(结合律).【设计意图】引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,学生先独立思考,然后小组交流.提高学生的建构能力及主动发现问题,探究问题的能力..复数加法的几何意义复数与复平面内的向量有一一对应关系,那么请同学们猜想一下,复数的加法也有这种对应关系吗?设分别与复数对应,则有,由平面向量的坐标运算有.这说明两个向量的和就是与复数对应的向量.因此,复数的加法可以按照向量加法的平行四边形法则来进行.这就是复数加法的几何意义.如图所示:由图可以看出,以、为邻边画平行四边形,其对角线所表示的向量就是复数对应的向量.8【设计意图】通过向量的知识,让学生体会
5、从数形结合的角度来认识复数的加减法法则,训练学生的形象思维能力,也培养了学生的数形结合思想.另外,当两复数的对应向量共线时,可直接运算;当不共线时,可类比向量加法的平行四边形,也培养了学生的类比思想.探究二:复数的减法类比复数的加法法则,你能试着推导复数减法法则吗?.复数的减法法则我们规定,复数的减法是加法的逆运算,即把满足的复数叫做复数减去的差,记作.根据复数相等的定义,有,因此,所以,即.这就是复数的减法法则,所以两个复数的差是一个确定的复数.【设计意图】复数的减法运算法则是通过转化为加法运算而得到的,渗透了转化的数学思想方法,是学生体会数学思想的素材.让学生自己动手推导减法
6、法则,有利于培养学生的创新能力和互助合作的学习习惯.考查学生的类比思想,提高学生主动发现问题,探究问题的能力..复数减法的几何意义设分别与复数对应,则这两个复数的差与向量(即)对应,这就是复数减法的几何意义.如图所示.【设计意图】两个复数的差(即)与连接两个终点,,且指向被减数的向量对应,这与平面向量的几何解释是一致的;它不仅又一次让我们看到了向量这一工具的功能,也使数和形得到了有机的结合.注意:只有将差向量平移至以原点为起点时,其终点才能对应该复数.三、理解新知.复数的加减法法则:8设,是任意两个复数,规定:;..复数加、减法的几何意义:()复数的加法按照向量加法的平行四边形法
7、则;()复数的减法按照向量减法的三角形法则..几点说明:()复数的加(减)法法则规定的合理性:它既与实数运算法则,运算律相同,又与向量完美地结合起来;()复数的加(减)法实质是:复数的实部与实部、虚部与虚部分别相加减;()多个复数相加减:可将各个复数的实部与实部、虚部与虚部分别相加减.()复平面内的两点间距离公式:.其中是复平面内的两点和所对应的复数,为点和点间的距离.即两个复数差的模的几何意义是:两个复数所对应的两个点之间的距离.【设计意图】加深对复数加(减)法法则的理解,从不