有理数的加减法教学设计.doc

有理数的加减法教学设计.doc

ID:48540231

大小:34.00 KB

页数:5页

时间:2020-02-25

有理数的加减法教学设计.doc_第1页
有理数的加减法教学设计.doc_第2页
有理数的加减法教学设计.doc_第3页
有理数的加减法教学设计.doc_第4页
有理数的加减法教学设计.doc_第5页
资源描述:

《有理数的加减法教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、有理数的加减法教学设计基本信息学科数学年级初一教学形式上课教师罗钦单位云阳县宝坪初级中学课题名称有理数的加减法学情分析因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。教学目标知识与技能:使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.过程与方法:通过有理数的加法运算

2、,培养学生的运算能力.情感与态度:激发学生学习数学的兴趣。教学过程(一)复习提问1.有理数是怎么分类的?2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?-3与-2;

3、3

4、与

5、-3

6、;

7、-3

8、与0;-2与

9、+1

10、;-

11、+4

12、与

13、-3

14、.(二)引入新课在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.(三)进行新课有理数的加法(板书课题)例1如图所示,某人从原点0出发,如果第一次

15、走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?两次行走后距原点0为8米,应该用加法.为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:1.同号两数相加(1)某人向东走5米,再向东走3米,两次一共走了多少米?这是求两次行走的路程的和.5+3=8用数轴表示如图从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?显然,两次一共向西走了8米(-5)+(-3)=-8用

16、数轴表示如图从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.总之,同号两数相加,取相同的符号,并把绝对值相加.例如,(-4)+(-5),……同号两数相加(-4)+(-5)=-(),…取相同的符号4+5=9……把绝对值相加∴(-4)+(-5)=-9.口答练习:(1)举例说明算式7+9的实际意义?(2)(-20)+(-13)=?2.异号两数相加(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?由数轴上表明,两次行走后,又回到了原点,两次一共向东走

17、了0米.5+(-5)=0可知,互为相反数的两个数相加,和为零.(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.就是5+(-3)=2.(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.就是3+(-5)=-2.请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?最后归纳绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用

18、较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.例如(-8)+5……绝对值不相等的异号两数相加8>5(-8)+5=-()……取绝对值较大的加数符号8-5=3……用较大的绝对值减去较小的绝对值∴(-8)+5=-3.口答练习用算式表示:温度由-4℃上升7℃,达到什么温度.(-4)+7=3(℃)3.一个数和零相加(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?显然,5+0=5.结果向东走了5米.(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.请同学们把(1)、(2)画出图

19、来由(1),(2)得出:一个数同0相加,仍得这个数.总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.有理数加法运算的三种情况:特例:两个互为相反数相加;(3)一个数和零相加.每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.(四)例题分析例1计算(-3)+(-9).分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).解:(-3)+(-9)=-12.(五)巩固练习1.计算(口答)(1)4+9;(2)4+(-9);(3)-4+9;(4)

20、(-4)+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。