能被2、3、4、5、6、7、8、9等数整除的数的特点

能被2、3、4、5、6、7、8、9等数整除的数的特点

ID:48340104

大小:41.51 KB

页数:6页

时间:2019-10-26

能被2、3、4、5、6、7、8、9等数整除的数的特点_第1页
能被2、3、4、5、6、7、8、9等数整除的数的特点_第2页
能被2、3、4、5、6、7、8、9等数整除的数的特点_第3页
能被2、3、4、5、6、7、8、9等数整除的数的特点_第4页
能被2、3、4、5、6、7、8、9等数整除的数的特点_第5页
资源描述:

《能被2、3、4、5、6、7、8、9等数整除的数的特点》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。 能被2整除的数,个位上的数是0、2、4、6、8、的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.  例如:4675=46×100+7

2、5  由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.  又如:832=8×100+32  由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被6整除的数,个数位上的数字和能被3整除的偶数,            如果一个数既能被2整除又能被3整

3、除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。能被8整除的数,百位、个位和十位所组成的三位数能被8整除,那么这个数能被8整除能被9整除的数,各个数位上的数字和能被9整除,那么这个数能

4、被9整除能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个                  位数为零)能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小  数)能被11整除,则该数就能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!        能被12整除的数,若一个整数能被3和4整除,则这个数能被12整除能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13

5、的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。能被17整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。  另一种方法:若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除能被19整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍

6、大、相加、验差」的过程,直到能清楚判断为止。 另一种方法:若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除能被23整除的数,若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除能被25整除的数,十位和个位所组成的两位数能被25整除。能被125整除的数,百位、十位和个位所组成的三位数能被125整除。公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如    9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n

7、-1)*(n-2)..(n-r+1);               因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:    有从1到9共计9个号码球,请问,可以组成多少个三位数?A1:    123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。      上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。