欢迎来到天天文库
浏览记录
ID:48150536
大小:464.00 KB
页数:23页
时间:2020-01-17
《§32 多元线性回归模型的参数估计.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、§3.2多元线性回归模型的估计估计方法:OLS、ML或者MM一、普通最小二乘估计*二、最大或然估计*三、矩估计四、参数估计量的性质五、样本容量问题六、估计实例一、普通最小二乘估计对于随机抽取的n组观测值如果样本函数的参数估计值已经得到,则有:i=1,2…n根据最小二乘原理,参数估计值应该是下列方程组的解其中于是得到关于待估参数估计值的正规方程组:正规方程组的矩阵形式即由于X’X满秩,故有将上述过程用矩阵表示如下:即求解方程组:得到:于是:例3.2.1:家庭收入-消费支出,可求得于是⃟正规方程组的另一种写法对于正规方程组于是或(*)或(**)是多元线性回归
2、模型正规方程组的另一种写法(*)(**)⃟样本回归函数的离差形式i=1,2…n其矩阵形式为其中:在离差形式下,参数的最小二乘估计结果为⃟随机误差项的方差的无偏估计可以证明,随机误差项的方差的无偏估计量为*二、最大似然估计对于多元线性回归模型易知Y的随机抽取的n组样本观测值的联合概率即为变量Y的似然函数对数或然函数为对对数或然函数求极大值,也就是对求极小值。因此,参数的最大或然估计为结果与参数的普通最小二乘估计相同*三、矩估计(MomentMethod,MM)OLS估计是通过得到一个关于参数估计值的正规方程组并对它进行求解而完成的。该正规方程组可以从
3、另外一种思路来导:求期望:称为原总体回归方程的一组矩条件,表明了原总体回归方程所具有的内在特征。由此得到正规方程组解此正规方程组即得参数的MM估计量。易知MM估计量与OLS、ML估计量等价。矩方法是工具变量方法(InstrumentalVariables,IV)和广义矩估计方法(GeneralizedMomentMethod,GMM)的基础在矩方法中关键是利用了E(X’)=0如果某个解释变量与随机项相关,只要能找到1个工具变量,仍然可以构成一组矩条件。这就是IV。如果存在>k+1个变量与随机项不相关,可以构成一组包含>k+1方程的矩条件。这就是GMM。
4、四、参数估计量的性质在满足基本假设的情况下,其结构参数的普通最小二乘估计、最大或然估计及矩估计仍具有:线性性、无偏性、有效性。同时,随着样本容量增加,参数估计量具有:渐近无偏性、渐近有效性、一致性。1、线性性其中,C=(X’X)-1X’为一仅与固定的X有关的行向量2、无偏性这里利用了假设:E(X’)=03、有效性(最小方差性)其中利用了和五、样本容量问题所谓“最小样本容量”,即从最小二乘原理和最大或然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。⒈最小样本容量样本最小容量必须不少于模型中解释变量的数目(包括常数项),即nk+1
5、因为,无多重共线性要求:秩(X)=k+12、满足基本要求的样本容量从统计检验的角度:n30时,Z检验才能应用;n-k8时,t分布较为稳定一般经验认为:当n30或者至少n3(k+1)时,才能说满足模型估计的基本要求。模型的良好性质只有在大样本下才能得到理论上的证明六、多元线性回归模型的参数估计实例例3.2.2在例2.5.1中,已建立了中国居民人均消费一元线性模型。这里我们再考虑建立多元线性模型。解释变量:人均GDP:GDPP前期消费:CONSP(-1)估计区间:1979~2000年Eviews软件估计结果23六、多元线性回归模型的参数估计实例例子:
6、基于一些数据估计中国宏观生产函数Se:0.78800.09020.0220t值:-11.313677.353434.1171p值:0.00000.00000.0000P值非常小,这表明各个解释变量对被解释变量有显著的解释作用。回忆:P值是检验结论犯第一类“弃真”错误的概率。P值非常小的含义是什么呢?
此文档下载收益归作者所有