欢迎来到天天文库
浏览记录
ID:47712830
大小:137.00 KB
页数:5页
时间:2019-11-01
《浙江高考数学总复习第七章数列推理与证明第5讲直接证明与间接证明课时作业》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第5讲 直接证明与间接证明 基础巩固题组(建议用时:40分钟)一、选择题1.若a,b∈R,则下面四个式子中恒成立的是( )A.lg(1+a2)>0B.a2+b2≥2(a-b-1)C.a2+3ab>2b2D.<解析 在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.答案 B2.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设( )A.三个内角都不大于60
2、°B.三个内角都大于60°C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°答案 B3.已知m>1,a=-,b=-,则以下结论正确的是( )A.a>bB.a+>0(m>1),∴<,即a3、(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a2+ac+c2<0⇐2a2-ac-c2>0⇐(a-c)(2a+c)>0⇐(a-c)(a-b)>0.答案 C5.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,4、a5、+6、b7、<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设8、x19、≥1.以下正确的是( )A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D10、.①的假设错误;②的假设正确解析 反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①不正确;对于②,其假设正确.答案 D二、填空题6.+与2+的大小关系为________.解析 要比较+与2+的大小,只需比较(+)2与(2+)2的大小,只需比较6+7+2与8+5+4的大小,只需比较与2的大小,只需比较42与40的大小,∵42>40,∴+>2+.答案 +>2+7.用反证法证明命题“a,b∈R,ab可以被5整除,那么a,b中至少有一个能被5整除”,那么假设的内容是__________________11、.答案 都不能被5整除8.下列条件:①ab>0,②ab<0,③a>0,b>0,④a<0,b<0,其中能使+≥2成立的条件的序号是________.解析 要使+≥2,只需>0成立,即a,b不为0且同号即可,故①③④能使+≥2成立.答案 ①③④三、解答题-5-9.若a,b,c是不全相等的正数,求证:lg+lg+lg>lga+lgb+lgc.证明 ∵a,b,c∈(0,+∞),∴≥>0,≥>0,≥>0.又上述三个不等式中等号不能同时成立.∴··>abc成立.上式两边同时取常用对数,得lg>lgabc,∴lg+lg+l12、g>lga+lgb+lgc.10.设数列{an}是公比为q的等比数列,Sn是它的前n项和.(1)求证:数列{Sn}不是等比数列;(2)数列{Sn}是等差数列吗?为什么?(1)证明 假设数列{Sn}是等比数列,则S=S1S3,即a(1+q)2=a1·a1·(1+q+q2),因为a1≠0,所以(1+q)2=1+q+q2,即q=0,这与公比q≠0矛盾,所以数列{Sn}不是等比数列.(2)解 当q=1时,Sn=na1,故{Sn}是等差数列;当q≠1时,{Sn}不是等差数列,否则2S2=S1+S3,即2a1(1+q)=13、a1+a1(1+q+q2),得q=0,这与公比q≠0矛盾.综上,当q=1时,数列{Sn}是等差数列;当q≠1时,数列{Sn}不是等差数列.能力提升题组(建议用时:25分钟)11.已知函数f(x)=,a,b是正实数,A=f,B=f(),C=f,则A,B,C的大小关系为( )A.A≤B≤CB.A≤C≤BC.B≤C≤AD.C≤B≤A解析 ∵≥≥,又f(x)=在R上是减函数,∴f≤f()≤f-5-.答案 A12.设a,b,c均为正实数,则三个数a+,b+,c+( )A.都大于2B.都小于2C.至少有一个不大于2D14、.至少有一个不小于2解析 ∵a>0,b>0,c>0,∴++=++≥6,当且仅当a=b=c=1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.答案 D13.如果a+b>a+b,则a,b应满足的条件是________.解析 ∵a+b-(a+b)=(a-b)+(b-a)=(-)(a-b)=(-)2(+).∴当a≥0,b≥0且a≠b时,(-)2(+)>0.∴a+b>a+b成立的条件是a≥0,b≥0
3、(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a2+ac+c2<0⇐2a2-ac-c2>0⇐(a-c)(2a+c)>0⇐(a-c)(a-b)>0.答案 C5.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,
4、a
5、+
6、b
7、<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设
8、x1
9、≥1.以下正确的是( )A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D
10、.①的假设错误;②的假设正确解析 反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①不正确;对于②,其假设正确.答案 D二、填空题6.+与2+的大小关系为________.解析 要比较+与2+的大小,只需比较(+)2与(2+)2的大小,只需比较6+7+2与8+5+4的大小,只需比较与2的大小,只需比较42与40的大小,∵42>40,∴+>2+.答案 +>2+7.用反证法证明命题“a,b∈R,ab可以被5整除,那么a,b中至少有一个能被5整除”,那么假设的内容是__________________
11、.答案 都不能被5整除8.下列条件:①ab>0,②ab<0,③a>0,b>0,④a<0,b<0,其中能使+≥2成立的条件的序号是________.解析 要使+≥2,只需>0成立,即a,b不为0且同号即可,故①③④能使+≥2成立.答案 ①③④三、解答题-5-9.若a,b,c是不全相等的正数,求证:lg+lg+lg>lga+lgb+lgc.证明 ∵a,b,c∈(0,+∞),∴≥>0,≥>0,≥>0.又上述三个不等式中等号不能同时成立.∴··>abc成立.上式两边同时取常用对数,得lg>lgabc,∴lg+lg+l
12、g>lga+lgb+lgc.10.设数列{an}是公比为q的等比数列,Sn是它的前n项和.(1)求证:数列{Sn}不是等比数列;(2)数列{Sn}是等差数列吗?为什么?(1)证明 假设数列{Sn}是等比数列,则S=S1S3,即a(1+q)2=a1·a1·(1+q+q2),因为a1≠0,所以(1+q)2=1+q+q2,即q=0,这与公比q≠0矛盾,所以数列{Sn}不是等比数列.(2)解 当q=1时,Sn=na1,故{Sn}是等差数列;当q≠1时,{Sn}不是等差数列,否则2S2=S1+S3,即2a1(1+q)=
13、a1+a1(1+q+q2),得q=0,这与公比q≠0矛盾.综上,当q=1时,数列{Sn}是等差数列;当q≠1时,数列{Sn}不是等差数列.能力提升题组(建议用时:25分钟)11.已知函数f(x)=,a,b是正实数,A=f,B=f(),C=f,则A,B,C的大小关系为( )A.A≤B≤CB.A≤C≤BC.B≤C≤AD.C≤B≤A解析 ∵≥≥,又f(x)=在R上是减函数,∴f≤f()≤f-5-.答案 A12.设a,b,c均为正实数,则三个数a+,b+,c+( )A.都大于2B.都小于2C.至少有一个不大于2D
14、.至少有一个不小于2解析 ∵a>0,b>0,c>0,∴++=++≥6,当且仅当a=b=c=1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.答案 D13.如果a+b>a+b,则a,b应满足的条件是________.解析 ∵a+b-(a+b)=(a-b)+(b-a)=(-)(a-b)=(-)2(+).∴当a≥0,b≥0且a≠b时,(-)2(+)>0.∴a+b>a+b成立的条件是a≥0,b≥0
此文档下载收益归作者所有