江苏2018届高考数学总复习专题10.2双曲线试题含解析

江苏2018届高考数学总复习专题10.2双曲线试题含解析

ID:47712677

大小:611.00 KB

页数:21页

时间:2019-11-01

江苏2018届高考数学总复习专题10.2双曲线试题含解析_第1页
江苏2018届高考数学总复习专题10.2双曲线试题含解析_第2页
江苏2018届高考数学总复习专题10.2双曲线试题含解析_第3页
江苏2018届高考数学总复习专题10.2双曲线试题含解析_第4页
江苏2018届高考数学总复习专题10.2双曲线试题含解析_第5页
资源描述:

《江苏2018届高考数学总复习专题10.2双曲线试题含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题10.2双曲线【三年高考】1.【2017高考江苏】在平面直角坐标系中,双曲线的右准线与它的两条渐近线分别交于点,,其焦点是,则四边形的面积是▲.2.【2016高考江苏】在平面直角坐标系xOy中,双曲线的焦距是▲.【答案】【解析】试题分析:.故答案应填:【考点】双曲线性质【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息相关,明确双曲线标准方程中各个量的对应关系是解题的关键,揭示焦点在x轴,实轴长为,虚轴长为,焦距为,渐近线方程为,离心率为.2.【2012江苏,理8】在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为__________.【答案】2【解

2、析】根据双曲线方程的结构形式可知,此双曲线的焦点在x轴上,且a2=m,b2=m2+4,故c2=m2+m+4,于是,解得m=2,经检验符合题意.4.【2017课标II,理9】若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为()A.2B.C.D.-21-【答案】A【解析】【考点】双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a

3、或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)。5.【2017天津,理5】已知双曲线的左焦点为,离心率为.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A)(B)(C)(D)【答案】【考点】双曲线的标准方程-21-【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于的方程,解方程组求出,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为,(2)与共渐近线的双曲线可设为,(3)等轴双曲线可设为等,均为待定系数法求标准方程.6.【2017北京,理9】若双曲线的离心率为,则实数m=_____

4、____.【答案】2【解析】试题分析:,所以,解得.【考点】双曲线的方程和几何性质【名师点睛】本题主要考查的是双曲线的标准方程和双曲线的简单几何性质,属于基础题.解题时要注意、、的关系,否则很容易出现错误.以及当焦点在轴时,哪些量表示,根据离心率的公式计算.7.【2017课标1,理】已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.【答案】【解析】试题分析:-21-【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一

5、类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是;③双曲线的顶点到渐近线的距离是.8.【2017课标3,理5】已知双曲线C:(a>0,b>0)的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为A.B.C.D.-21-【答案】B【解析】试题分析:双曲线C:(a>0,b>0)的渐近线方程为,椭圆中:,椭圆,即双曲线的焦点为,据此可得双曲线中的方程组:,解得:,则双曲线的方程为.故选B.【考点】双曲线与椭圆共焦点问题;待定系数法求双曲线的方程.【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程

6、的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.10.【2017山东,理14】在平面直角坐标系中,双曲线的右支与焦点为的抛物线交于两点,若,则该双曲线的渐近线方程为.【答案】-21-【考点】1.双曲线的几何性质.2.抛物线的定义及其几何性质.【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线

7、标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.2.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.10.【2016高考新课标1卷改编】已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是     .【答案】【解析】试题分析:表示双曲线,则∴,由双曲线性质知:,其中是半焦距∴焦距,解得,∴.考点:双曲线的性质【名师点睛】双

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。