资源描述:
《数列通项公式和求和公式总结[1]》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、一公式法例1数列是等差数列,数列是等比数列,数列中对于任何都有分别求出此三个数列的通项公式.二利用与的关系例2若数列的前项和为求的通项公式.三累加法例3数列中已知,求的通项公式.四累乘法例4数列中已知,求的通项公式.五构造法例5①数列中已知,求的通项公式;②数列中已知,求的通项公式.③数列中已知是数列的前项和,且,求的通项公式一利用公式例6等比数列的前项和求的值.二分组求和例7求数列的前项和.三错位相减例8求和四裂项相消例9求和五倒序相加例10设,求和1.求数列,的前项和.2已知,求的前n项和.3.求数列a,2a2,3a3,4
2、a4,…,nan,…(a为常数)的前n项和。4.求证:185.求数列,,,…,,…的前n项和S6.数列{an}:,求S2002.7.求数5,55,555,…,55…5的前n项和Sn8.已知数列是等差数列,且,求的值.9.已知数列的通项公式为求它的前n项的和.10.在数列中,证明数列是等差数列,并求出Sn的表达式.11.数列为正数的等比数列,它的前n项和为80,前2n项和为6560,且前n项中数值最大的项为54.求其首项a1及公比q.12.已知数列求.13.设为等差数列,Sn为数列的前n项和,已知S7=7,S15=75.记Tn为
3、数列的前n项和,求Tn.14.求数列的前项和15.已知:.求.16.求和.17.,求。18.设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,….(Ⅰ)求a1,a2;(Ⅱ){an}的通项公式。19.已知数列:,求的值。20.求和:1821.求数列的前项和:22.求数列的前项和。24.求的值。25.已知数列的通项公式,求它的前n项和.26.已知数列的通项公式求它的前n项和.27.求和:28.已知数列30.解答下列问题:(I)设(1)求的反函数(2)若(3)若31.设函数求和:32.已知
4、数列的各项为正数,其前n项和,(I)求之间的关系式,并求的通项公式;(II)求证33.已知数列{}的各项分别为的前n项和.34.已知数列{}满足:的前n项和.1835.设数列{}中,中5的倍数的项依次记为,(I)求的值.(II)用k表示,并说明理由.(III)求和:36.数列{}的前n项和为,且满足(I)求与的关系式,并求{}的通项公式;(II)求和37.将等差数列{}的所有项依次排列,并如下分组:(),(),(),…,其中第1组有1项,第2组有2项,第3组有4项,…,第n组有项,记Tn为第n组中各项的和,已知T3=-48,T
5、4=0,(I)求数列{}的通项公式;(II)求数列{Tn}的通项公式;(III)设数列{Tn}的前n项和为Sn,求S8的值.39.(1)设是各项均不为零的()项等差数列,且公差,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.(i)当时,求的数值;(ii)求的所有可能值.(2)求证:对于给定的正整数(),存在一个各项及公差均不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列.40.某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案
6、:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元;两种方案的使用期都是10年,到期一次性归还本息.若银行两种形式的贷款都按年息5%的复利计算,试比较两种方案中,哪种获利更多?(取)答案:1.设则18两式相减得∴.2.解:由由等比数列求和公式得===1-3.解:若a=0,则Sn=0若a=1,则Sn=1+2+3+…+n=若a≠0且a≠1则Sn=a+2a2+3a3+4a4+…+nan∴aSn=a2+2a3+3a4+…+nan+1∴(1-a)Sn=a+a2+a3+…+an-nan+1=∴Sn=当a=0时,此式也成立。∴
7、Sn=5.解:∵=)Sn=18==6.解:设S2002=由可得……∵(找特殊性质项)∴ S2002=(合并求和)====57.n解:因为55…5=n所以Sn=5+55+555+…+55…5==18=解析:根据通项的特点,通项可以拆成两项或三项的常见数列,然后再分别求和。另外:Sn=可以拆成:Sn=(1+2+3+…+n)+()8.∵为等差数列,且1+17=5+13,∴.由题设易知=117.又为与的等差中项,∴.9.(裂项)于是有方程组两边相加,即得10.【证明】∵∴.化简,得Sn-1-Sn=2SnSn-1两边同除以.SnSn-1
8、,得∴数列是以为首项,2为公差的等差数列.18∴∴11.∵∴此数列为递增等比数列.故q≠1.依题设,有②÷①,得④④代入①,得⑤⑤代入③,得⑥④代入⑥,得,再代入③,得a1=2,再代入⑤,得q=3.12.令(裂项)故有=.13.设等差数列的公差为d,则(I)∵∴18解得代入(