欢迎来到天天文库
浏览记录
ID:47415282
大小:270.50 KB
页数:6页
时间:2019-06-27
《数学建模试卷2009(答案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、华中科技大学《数学建模》考试卷(半开卷)2009~2010学年度第一学期成绩学号专业班级姓名一二三四五六合计分数101020202020100一、选择题(每题2分,共10分)(1)建模预测天气。在影响天气的诸多因素及相互关系中,既有已知的又有许多未知的非确定的信息。这类模型属于(b)。a.白箱模型b.灰箱模型c.黑箱模型(2)在城镇供水系统模型中,水箱的尺寸是(c)。a.常量b.变量c.参数(3)在整理数据时,需处理和分析观测和实验数据中的误差,异常点来源于(c)。a.随机误差b.系统误差c.过失误差(4)需对一类动物建立身长与体重关系的模型。在对模型的参数进行估计时,如已有30组数据
2、,且参数估计精度要求较高,应采用(b)估计参数。a.图解法b.统计法c.机理分析法(5)在求解模型时,为了简化方程有时会舍弃高价小量(如一阶近似、二阶近似等),由此带来一定的误差,此误差是(a)。a.截断误差b.假设误差c.舍入误差二、填空题(每空1分,共10分)(1)已知函数,当a很小时,一阶近似为(),当w很小时,二阶近似为(),而当x很小时,一阶近似为(),二阶近似为()。6(2)学校共有3个系,甲系103人,乙系63人,丙系34人。学生会共设有20个成员,按Hamilton方法分配名额为(10,6,4),按Q值法分配名额为(11,6,3)。(3)使用三次样条函数进行插值,在两节
3、点间是(3)次多项式,在每个节点上既连续又(光滑)。中共有(n+3)个待定系数,可由(插值)条件唯一确定。三、生活在阿拉斯加海滨的鲑鱼服从Malthus(马尔萨斯)生物总数增长律:,其中p(t)是t时刻鲑鱼总数,t按分计。在时刻t=0,一群鲨鱼定居在这片水域,开始捕食鲑鱼,鲨鱼捕杀鲑鱼的速率为0.001p2(t)。此外,由于在它们周围出现意外情况,平均每分钟有0.002条鲑鱼离开阿拉斯加水域。(1)考虑到这两种因素,试修正马尔萨斯生物总数增长律;(5分)(2)假设在t=0时存在一百万条鲑鱼,当t→∞时发生什么情况?(15分)解:(1)修正后的马尔萨斯生物总数增长律为:⑤(2)令:②整理
4、:平衡解:④④∴平衡点是稳定的。②即:当t→∞时还剩两条鲑鱼。③6四、沿河有三城镇甲、乙和丙,污水需处理后才能排入河中。三城镇单独建立污水处理厂分别需投资230万元、160万元和230万元。如甲、乙联合建厂,需投资350万元;乙、丙联合建厂,需投资365万元;甲、丙联合建厂,需投资463万元;三城合作建厂,需投资556万元。如果联合建厂,各城镇如何分担费用?(20分)解:将分担费用问题转化为效益分配问题。即三城合作建厂节约了投资,产生了效益,可以用Shapley值方法分配这个效益。此问题为3人合作对策。①定义特征函数:联合建厂比单独建厂节约的投资。④s{1}{1,2}{1,3}{1,2
5、,3}v(s)040064v(s-{1})00025v(s)-v(s-{1})040039︱s︱1223w(︱s︱)1/31/61/61/3w(︱s︱)〔v(s)-v(s-{1})〕06.67013计算j1:④s{2}{1,2}{2,3}{1,2,3}v(s)0402564v(s-{2})0000v(s)-v(s-{2})0402564︱s︱1223w(︱s︱)1/31/61/61/3w(︱s︱)〔v(s)-v(s-{2})〕06.674.1721.33计算j2:④6s{3}{1,3}{2,3}{1,2,3}v(s)002564v(s-{3})00040v(s)-v(s-{3})002
6、524︱s︱1223w(︱s︱)1/31/61/61/3w(︱s︱)〔v(s)-v(s-{3})〕004.178计算j3:④分配向量为:在联合建厂总投资额556万元中各城的分担费用为:甲城:乙城:丙城:③五、建模描述阻尼摆的运动周期。质量为m的小球系在长度为l的线的一端,稍偏离平衡位置后小球在重力mg作用下做往复摆动。考虑阻力,并设阻力与摆的速度成正比,比例系数为k。(1)求摆动周期t的表达式。(15分)(2)讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期。(5分)解:(1)设①量纲:量纲矩阵:⑦有m-r=5-3=2个基本解。6②即:②与等效。①由由,其中为未知函数。①∴
7、#①(2)物理模拟的比例:设对原型有:①对模型有:①又设①则当时,即成立时,就有:①#①6六、一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的数据(胸围指鱼身的最大周长)。设,其中w为鱼的重量,l为鱼的身长,为待定参数。试用以下数据确定参数。(20分)身长(cm)36.831.843.836.832.145.1
此文档下载收益归作者所有