列一元一次方程解应用题复习

列一元一次方程解应用题复习

ID:45961585

大小:1.09 MB

页数:39页

时间:2019-11-19

列一元一次方程解应用题复习_第1页
列一元一次方程解应用题复习_第2页
列一元一次方程解应用题复习_第3页
列一元一次方程解应用题复习_第4页
列一元一次方程解应用题复习_第5页
资源描述:

《列一元一次方程解应用题复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、列一元一次方程解应用题复习刘圆圆七年级专项训练列方程解应用题的一般步骤:(1)审题弄清题意,分清哪些是已知量,哪些是未知量.(2)找等量关系.(3)设未知数.(4)列方程.(5)解方程.(6)根据题意,作出答案.知识梳理1.具体可从以下三条途径出发研究解决:(1)图解分析:分析问题中的数量关系时,借助图形,可以使抽象的关系直观化、简单化,根据题意画图列式是对同学们的思维能力的有效培养.这里,应要求“图要达意”,避免图上发生错误而造成列式错误.(2)列表分析:列表法的优点是通过列表归类使对应量之间关系较

2、为清晰,往往有利于运用比例分析法显示解题思路.(3)框图分析:框图分析是由文字语言、符号语言及长方格通过题中相等关系确立而成,容易操作,不拘一格.例1某连队从驻地出发前往某地执行任务.行军速度是6千米/时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达给连队.小王骑自行车以14千米/时的速度沿同一路线追赶连队.问是否能在规定时间内完成任务.分析:这属于行程问题当中的追及问题,画线段图理解例2汽船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5小时.已知此船在静水中速度为1

3、8千米/时,水流速度为2千米/时.求甲、乙两地间的距离.2.抓住“不变量”解应用题列方程解应用题的关键是寻找数量间的相等关系,这要从分析题中的基本量入手去寻找.一般说来,一个问题中有几种基本量就可以找出几种相等关系.但有些应用题中的相等关系不外露,如能抓住问题中的“不变量”即可得到相等关系,从而列出方程,甚至能找出多种解法,拓宽解题思路.例3某工人在一定时间内加工一批零件,如果每天加工44个就比规定任务少加工20个;如果每天加工50个,则可超额10个.求规定加工的零件数和计划加工的天数.分析:本题每天

4、加工的零件数是变量,实际做的工作总量也随着变化,但有两个不变量,即计划加工的时间不变,规定任务不变,这就是题目中的等量关系,故可得到两种解法.例4一艘轮船从甲地顺流而下8小时到达乙地,原路返回要12小时,才能到达甲地,已知水流速度是每小时3千米,求甲、乙两地的距离.分析:本题中甲、乙两地间的距离与轮船本身的速度(静水速度)是“不变量”,分别抓住这两个“不变量”即得两种不同的等量关系.可从两个不同方面设出未知数.有关溶液的浓度应用题是初中代数中列方程解应用题的一类基本题.解这类应用题,关键的问题是:抓住

5、不变量(如稀释前溶质重量等于稀释后溶质重量)列方程.(1)求溶质例5、现有浓度为20%的盐水300克和浓度为30%的盐水200克,需配制成浓度为60%的盐水,问两种溶液全部混合后,还需加盐多少克?解:设两种溶液全部混合后,还需加盐x克,注意混合前后溶质总量不变,依题意得方程:20%×300+30%×200+x=60%(300+200+x).化简得2x=900.解这个方程得x=450.答:两种溶液全部混合后,还需加盐450克.例6、要把浓度为90%的酒精溶液500克,稀释成浓度为75%的酒精溶液,需加水

6、多少克.解:设需加水x克,因为加水前后溶质数量不变,依题意得方程75%(x+500)=90%×500.化简得15x=1500.解这个方程得x=100.答:需加水100克.(2)求溶剂例7、有若干克4%的盐水蒸发了一些水分后,变成10%的盐水,接着加进4%的盐水300克,混合后变为6.4%的盐水,问:最初有盐水多少克?解:设最初有盐水x克,注意混合后的含盐量,依题意得方程化简得1.44x=720.解这个方程得x=500.答:最初有盐水500克.(3)求溶液例8、甲种硫酸溶液含硫酸的百分数是乙种硫酸溶液的

7、1.5倍,甲种硫酸溶液5份与乙种硫酸溶液3份混合成的硫酸溶液含硫酸52.5%,求两种硫酸溶液含硫酸的百分数.解:设乙种硫酸溶液含硫酸的百分数为x,则甲种硫酸溶液含硫酸的百分数为1.5x,依题意得方程5×1.5x+3x=52.5%×8.化简得105x=42.解这个方程得x=0.4=40%,则1.5x=1.5×0.4=0.6=60%.答:甲种硫酸溶液含硫酸的百分数是60%,乙种硫酸溶液含硫酸的百分数是40%.(4)求浓度从以上几例可以看出:抓住不变量关系是解决有关百分比浓度应用题中所涉及的各种量的关键.3

8、.用整体思想解应用题数学崇尚简捷.初中不少数学应用题若能着眼于整体结构,往往能触及问题的本质,从而获得简捷明快的解法.把整体思想解题用于教学不但可以培养学生着眼于整体的意识,而且有利于培养学生思维的敏捷性.例9甲、乙两人分别从A、B两地同时相向出发,在离B地6千米处相遇后又继续前进,甲到B地,乙到A地后,都立即返回,又在离A地8千米处相遇,求A、B两地间的距离.分析:用常规方法解决本题具有一定难度,若把两个运动过程一起处理,便可使问题迎刃而解.解:如图,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。