列一元一次方程解应用题复习

列一元一次方程解应用题复习

ID:42287297

大小:16.00 KB

页数:5页

时间:2019-09-11

列一元一次方程解应用题复习_第1页
列一元一次方程解应用题复习_第2页
列一元一次方程解应用题复习_第3页
列一元一次方程解应用题复习_第4页
列一元一次方程解应用题复习_第5页
资源描述:

《列一元一次方程解应用题复习》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、列一元一次方程解应用题复习教案【教学目标】1、进一步熟悉一元一次方程的解法2、在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.3、使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.【教学重点、难点】使学生理解问题情境,探究情境中包含的数量关系,最终用方程来描述和刻画事物间的相等关系.【教学方法】启发式讲授法【教学过程】复习回顾:(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一

2、个合理未知数;(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键步骤);(3)根据相等关系,正确列出方程,即所列方程应满足两边的量要相等;(4)根据方程的同解性原理,解方程,求出未知数的值;(5)检验后完整写出答案。1.具体可从以下三条途径出发研究解决:(1)图解分析:分析问题中的数量关系时,借助图形,可以使抽象的关系直观化、简单化,根据题意画图列式是对同学们的思维能力的有效培养.这里,应要求“图要达意”,避免图上发生错误而造成列式错误.(2)列表分析:列表法的优点是通过列表归类使对应量之间关系较为清晰,往往有利于运用比

3、例分析法显示解题思路.(3)框图分析:框图分析是由文字语言、符号语言及长方格通过题中相等关系确立而成,容易操作,不拘一格.例1某连队从驻地出发前往某地执行任务.行军速度是6千米/时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达给连队.小王骑自行车以14千米/时的速度沿同一路线追赶连队.问是否能在规定时间内完成任务.分析:这属于行程问题当中的追及问题,画线段图理解例2汽船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5小时.已知此船在静水中速度为18千米/时,水流速度为2千米/时.求甲、乙两地间的距离.2.

4、抓住“不变量”解应用题列方程解应用题的关键是寻找数量间的相等关系,这要从分析题中的基本量入手去寻找.一般说来,一个问题中有几种基本量就可以找出几种相等关系.但有些应用题中的相等关系不外露,如能抓住问题中的“不变量”即可得到相等关系,从而列出方程,甚至能找出多种解法,拓宽解题思路.例3某工人在一定时间内加工一批零件,如果每天加工44个就比规定任务少加工20个;如果每天加工50个,则可超额10个.求规定加工的零件数和计划加工的天数.分析:本题每天加工的零件数是变量,实际做的工作总量也随着变化,但有两个不变量,即计划加工的时间不变,规定任务不

5、变,这就是题目中的等量关系,故可得到两种解法.例4一艘轮船从甲地顺流而下8小时到达乙地,原路返回要12小时,才能到达甲地,已知水流速度是每小时3千米,求甲、乙两地的距离.分析:本题中甲、乙两地间的距离与轮船本身的速度(静水速度)是“不变量”,分别抓住这两个“不变量”即得两种不同的等量关系.可从两个不同方面设出未知数.3.用整体思想解应用题:数学崇尚简捷.初中不少数学应用题若能着眼于整体结构,往往能触及问题的本质,从而获得简捷明快的解法.把整体思想解题用于教学不但可以培养学生着眼于整体的意识,而且有利于培养学生思维的敏捷性。例9甲、乙两人

6、分别从A、B两地同时相向出发,在离B地6千米处相遇后又继续前进,甲到B地,乙到A地后,都立即返回,又在离A地8千米处相遇,求A、B两地间的距离.解:如图,第一次相遇,甲、乙两人合走一个全程,对应乙走6千米;第二次相遇,甲、乙两人合走了三个全程,故乙共走了18千米,设A、B两地间的距离为x千米,第二次相遇时乙走了(x+8)千米,所以x+8=18,x=10.答:A、B两地间距离为10千米.3.合理设元巧解一元一次方程应用题列方程解应用题在初中代数中既是重点,又是难点.怎样列方程解应用题,除了找出题中的相等关系外,关键还在于如何设元.在列方程

7、解应用题时,大多时候是将要求的量设为未知元(设直接元).而有时设直接元时,不易找出题目中的相等关系,此时则应恰当选择题目中要求的未知量外有关的某个量为未知元(设间接元),求出这些量后,再用这些量求出要求的量.还有些时候除了设直接元或间接元,还要设辅助列方程的量为未知元(设辅元),它在方程中,不需求出或不能求出,但便于建立相等关系列方程.(1)不同的设元有不同的方程应用题一般有多个未知量,因而有多种设元方法,从而有多种不同的方程.例11、从A地到B地,先下山然后走平路,某人骑自行车以每小时12千米的速度下山,而以每小时9千米的速度通过平路

8、,到达B地共用55分钟.回来时以每小时8千米的速度通过平路而以每小时4千米的速度上山,回到A地共用1.5小时,从A地到B地有多少千米?(2)直接设元与间接设元例12从家里骑车到火车站,若每小时行30千米,则

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。