资源描述:
《必修4基础训练题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、必修4基础训练题一、选择题:本大题共10小题,每小题5分,满分50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.-—71是()5B.第二象限角D.第四象限角A.第一象限角C.第三象限角2.已知点(3,—4)是角Q终边上的一点,则sina=()A.35B.--C.534D.4~33.cos240J的值等于()A1D1「73D.A.—B.C.22224.函数f(x)=sin2x是()A.最小正周期为龙的奇函数B.最小正周期为兀的偶函数C.最小正周期为2兀的奇函数D.最小正周期为2兀的偶函数7T5.为了得到函数y=cos(2x+—),xwR的图像,只需将函数y=cos2x,xwR
2、的图像()rrTTA.向左平移一个单位长度B.向右平移一个单位长度TT7TC.向左平移Z个单位长度0.向右平移Z个单位长度10106.函数y=丨sinx
3、的一个单调递减区间是()/兀兀、,,713兀、/3龙、r/3龙小、A.(,—)B.(—,—)C.(7T,—)D.(—,27T)4444227.若期=(2,4),7C=(1,3),则龙=()A.(1,1)B.(-1,-1)C.(3,7)D.(-3,-7)&已知向量a,b满足Ia
4、=1,Ib
5、=2,且a・b=—JL则a与b的夹角大小是()A.30°B.150°C.60°D.120°9.cosl5°co$75°-sinl5°sinl05°等于
6、()A.0B.-2c.02-D.110.已知tan(a+0)=3,tan(a_p=5,则tan2cr的值为(人4411A・一B.-——C.一D.778~8二填空题:本答题共4小题,每小题5分,满分20分。11.在边长为1的等边AABC中,AB•BC=12.已知a=(1,0),b=(1,1),且(a+2b)丄a,则2的值为13.已知aw(0,—),若sina=—,则V2cosftz+—)=254T[14.已知函数/(x)二Asin(亦+0)(A>0,69>0,^<—)在一个周期上的图像如下图所2示,则函数/(X)的解析式是f(X)=三•解答题:本大题共6小题,满分80分。解答须写出文字说
7、明•证明过程和演算步骤。15.(本小题满分12分)已知向量8=(3,4),b=(2,X),c=(2,y),且a〃b,a丄c,求Ib-c
8、的值。16.(本小题满分12分)已知函数/(x)=V3sinx+cosx,xwR(1)求/(x)的最大值;(2)该函数的图像可山函数y=sinx(xG/?)的图像经过怎样的平移和伸缩变换得到?11.(本小题满分14分)已知函数/(x)=sin2x+2sinxcosx+3cos2x,xgR(1)求函数/(x)的最小正周期;(2)求函数/(x)的单调递增区间。11.(本小题满分14分)7t1E2知tan(Q—)=—42/八主“、4sin2°—cos?&"“(
9、1)求tan(7fbjffl;(2)求的值。1+COS2(712.(本小题满分14分)已知A(3,0),B(0,3),C(cos。,sin。),其中71<6<2ti(1)^
10、ac
11、=
12、bc
13、,求角&的人小;(2)若AC•BC=-1,求sin2&的值。11.(本小题满分14分)观察下列各等式:3sin230°+sin290°+sin2150°=-;23sin260°+sin2120°+sin2180°=—;23sin215°+sin275°+sin2135°=-;2分析上述各等式的共同特点,归纳猜想出一个能反映一般规律的等式,并对等式的正确性作出证明。《必修4》基础训练题(A)••选择题题
14、号12345678910答案cBBACDBBAB二填空题11彳z371、11.一12・-113.14.3sin(—x+—)2524三.解答题15•解:Ta〃b,A3x-8=0,Ax=_8QAb=(2,-)・3••v二~33Ta丄b,・°・6+4v=0,/.c==(2,--)■228325,,,_25[ftb-c=(2,-)—(2,——)=(0,—),••Ib~c
15、326~~616.(1)V/(X)=V3sinx+cosx=2(——sinx+—cosx)=2sina(兀+―)126TT二当sin(x+—)=1时,f(x)取得最大值2jrn(2)先将函数y=sinx的图像向左平移一个单位,得
16、到甫数y=sinx(x+—)的图像,66再将所得函数图像上各点的横坐标不变,纵坐标变成原來的2倍,得到函数y=2sinTT(兀+—)的图像617.解:(1)/(x)=~c°s2"*sm2x+3•"十"=2+sin2x+cos2x=2+V2sin(2x+—)2242/r•:函数/(x)的最小正周期为丁=——=开2jtjrjrj7T7T(2)由2k兀<2%+—<2k7T+—.kgZ,得k;r