2019-2020年高考数学 课时53 随机抽样练习(含解析)

2019-2020年高考数学 课时53 随机抽样练习(含解析)

ID:45503810

大小:32.50 KB

页数:5页

时间:2019-11-14

2019-2020年高考数学 课时53 随机抽样练习(含解析)_第1页
2019-2020年高考数学 课时53 随机抽样练习(含解析)_第2页
2019-2020年高考数学 课时53 随机抽样练习(含解析)_第3页
2019-2020年高考数学 课时53 随机抽样练习(含解析)_第4页
2019-2020年高考数学 课时53 随机抽样练习(含解析)_第5页
资源描述:

《2019-2020年高考数学 课时53 随机抽样练习(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高考数学课时53随机抽样练习(含解析)1.在简单随机抽样中,某一个个体被抽到的可能性(  )A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与抽取几个样本有关2.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是(  )A.4B.5C.6D

2、.73.一段高速公路有300盏太阳能标志灯,其中进口的有30盏,联合研制的有75盏,国产的有195盏.为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口标志灯的数量为(  )A.2B.3C.5D.134.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为(  )A.10

3、1B.808C.1212D.xx5.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是(  )A.5B.7C.11D.136.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用简单随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法

4、,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则(  )A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是B.①②两种抽样方法,这100个零件中每个被抽到的概率都是,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是,②并非如此D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同7.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号)

5、.若第5组抽出的号码为22,则第8组抽出的号码应是     .若用分层抽样方法,则40岁以下年龄段应抽取     人. 8.在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取容量为20的样本,则三级品a被抽到的概率为     . 9.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽

6、取的号码是     . 10.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上的人,现在抽取20人进行某项调查,若采用分层抽样,求各年龄段应抽人数.11.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.12.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中

7、,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计20至40岁401858大于40岁152742总计5545100(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.1.答案:C解析:由随机抽样的特点知某个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.2.答案:C解析:抽取的植物油类种数:×20=2,抽取的果蔬类食品种数

8、:×20=4,故抽取的植物油类与果蔬类食品种数之和是6.3.答案:A解析:抽取的样本容量与总体中的个体数的比值为,所以抽取的样本中,进口的标志灯抽取的数量为30×=2.4.答案:B解析:四个社区抽取的总人数为12+21+25+43=101,由分层抽样可知,,解得N=808.故选B.5.答案

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。