欢迎来到天天文库
浏览记录
ID:44711436
大小:325.28 KB
页数:8页
时间:2019-10-25
《高考数学第八章立体几何5第5讲直线、平面垂直的判定与性质练习理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第5讲直线、平面垂直的判定与性质[基础题组练]1.若平面α⊥平面β,平面α∩平面β=直线l,则( )A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α,β都垂直解析:选D.对于A,垂直于平面β的平面与平面α平行或相交,故A错误;对于B,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故B错误;对于C,垂直于平面β的平面与直线l平行或相交,故C错误,D正确.2.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α
2、,m⊂β( )A.若l⊥β,则α⊥β B.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析:选A.选项A,因为l⊥β,l⊂α,所以α⊥β,A正确;选项B,α⊥β,l⊂α,m⊂β,l与m的位置关系不确定;选项C,因为l∥β,l⊂α,所以α∥β或α与β相交;选项D,因为α∥β,l⊂α,m⊂β,此时l与m的位置关系不确定.故选A.3.如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体PABC中共有直角三角形的个数为( )A.4 B.3C.2
3、D.1解析:选A.由PA⊥平面ABC可得△PAC,△PAB是直角三角形,且PA⊥BC.又∠ABC=90°,所以△ABC是直角三角形,且BC⊥平面PAB,所以BC⊥PB,即△PBC为直角三角形,故四面体PABC中共有4个直角三角形.4.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:选A.由AC⊥AB,AC⊥BC1,得AC⊥平面ABC1.因为AC⊂平面ABC,所以平面ABC1⊥平面ABC.所以C1在平
4、面ABC上的射影H必在两平面的交线AB上.5.如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC解析:选D.因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确;在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,且AE,PE⊂平面PAE,所以BC⊥平面PAE,因为DF∥BC,所以DF⊥平面PAE,又DF⊂平面PDF,从而平面PDF⊥平面PAE.因此
5、选项B,C均正确.6.如图,在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平面ABC,PC=4,M是AB上的一个动点,则PM的最小值为________.解析:作CH⊥AB于H,连接PH.因为PC⊥平面ABC,所以PH⊥AB,PH为PM的最小值,等于2.答案:27.如图所示,在四棱锥PABCD中PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:连接AC,BD,则AC⊥BD,因为PA⊥底面ABCD,所以
6、PA⊥BD.又PA∩AC=A,所以BD⊥平面PAC,所以BD⊥PC.所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,所以平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC)8.如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中正确结论的序号是________.解析:①AE⊂平面PAC,BC⊥AC,BC⊥PA⇒AE⊥BC,故①正确;②AE⊥PC,AE⊥BC,PB⊂平面PBC⇒AE
7、⊥PB,AF⊥PB,EF⊂平面AEF⇒EF⊥PB,故②正确;③若AF⊥BC⇒AF⊥平面PBC,则AF∥AE与已知矛盾,故③错误;由①可知④正确.答案:①②④9.如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,PE∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.(1)求证:BF∥平面ADP;(2)已知O是BD的中点,求证:BD⊥平面AOF.证明:(1)如图,取PD的中点为G,连接FG,AG,因为F是CE的中点,所以FG是梯形CDPE的中位线,因为
8、CD=3PE,所以FG=2PE,FG∥CD,因为CD∥AB,AB=2PE,所以AB∥FG,AB=FG,即四边形ABFG是平行四边形,所以BF∥AG,又BF⊄平面ADP,AG⊂平面ADP,所以BF∥平面ADP.(2)延长AO交CD于M,连接BM,FM,因为BA⊥AD,CD⊥DA,AB=AD,O为BD的中点
此文档下载收益归作者所有