十字相乘法分解 因式

十字相乘法分解 因式

ID:44227747

大小:93.00 KB

页数:6页

时间:2019-10-19

十字相乘法分解 因式_第1页
十字相乘法分解 因式_第2页
十字相乘法分解 因式_第3页
十字相乘法分解 因式_第4页
十字相乘法分解 因式_第5页
资源描述:

《十字相乘法分解 因式》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、十字相乘法分解因式同学们都知道,型的二次三项式是分解因式中的常见题型,那么此类多项式该如何分解呢?观察=,可知=。这就是说,对于二次三项式,如果常数项b可以分解为p、q的积,并且有p+q=a,那么=。这就是分解因式的十字相乘法。下面举例具体说明怎样进行分解因式。例1、      因式分解。分析:因为         7x + (-8x)=-x解:原式=(x+7)(x-8)例2、      因式分解。分析:因为            -2x+(-8x)=-10x解:原式=(x-2)(x-8)例3、      因式分解。分析:该题虽然二次项系数不为1,但也可以用十字相乘法进行因式分解。   

2、  因为         9y + 10y=19y解:原式=(2y+3)(3y+5)例4、      因式分解。分析:因为         21x+(-18x)=3x解:原式=(2x+3)(7x-9)例5、      因式分解。分析:该题可以将(x+2)看作一个整体来进行因式分解。6因为 -25(x+2)+[-4(x+2)]=-29(x+2)解:原式=[2(x+2)-5][5(x+2)-2]       =(2x-1)(5x+8)例6、      因式分解。分析:该题可以先将()看作一个整体进行十字相乘法分解,接着再套用一次十字相乘。因为                     -2+[

3、-12]=-14    a + (-2a)=-a   3a +(-4a)=-a解:原式=[-2][-12]       =(a+1)(a-2)(a+3)(a-4)从上面几个例子可以看出十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握。但要注意,并不是所有的二次三项式都能进行因式分解,如在实数范围内就不能再进一步因式分解了因式分解的一点补充——十字相乘法宜昌九中尤启平教学目标1.使学生掌握运用十字相乘法把某些形如ax2+bx+c的二次三项式因式分解;2.进一步培养学生的观察力和思维的敏捷性。教学重点和难点重点:正确地运用十字相乘法把某些二次项系数不是1的二次三项式因式分解。难

4、点:灵活运用十字相乘法因分解式。教学过程设计一、导入新课6前一节课我们学习了关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。因此,我们得到x2+(p+q)x+pq=(x+p)(x+q).课前练习:下列各式因式分解1.-x2+2x+152.(x+y)2-8(x+y)+48;3.x4-7x2+18;4.x2-5xy+6y2。答:1.-(x+3)(x-5);2.(x+y-12)(x+y+4);3.(x+3)(x-3)(x2+2);4.(x-2y)(x-3y)。我们已经学习了把形如x2+px+q的某些二

5、次三项式因式分解,也学习了通过设辅助元的方法把能转化为形如x2+px+q型的某些多项式因式分解。对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式因式分解。二、新课例1把2x2-7x+3因式分解。分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。分解二次项系数(只取正因数):2=1×2=2×1;分解常数项:3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。用画十字交叉线方法表示下列四种情况:11131-11-32×

6、32×12×-32×-11×3+2×11×1+2×31×(-3)+2×(-1)1×(-1)+2×(-3)=5=7=-5=-7经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。解2x2-7x+3=(x-3)(2x-1)。一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下:a1c1a2×c2a1c2+a2c1按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c

7、1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2)。像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。例2把6x2-7x-5分解因式。6分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种213×-52×(-5)+3×1=-7是正确的,因此原多项式可以用直字相乘法分解

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。