(课件1)26.2用函数观点看一元二次方程

(课件1)26.2用函数观点看一元二次方程

ID:44187001

大小:351.50 KB

页数:12页

时间:2019-10-19

(课件1)26.2用函数观点看一元二次方程_第1页
(课件1)26.2用函数观点看一元二次方程_第2页
(课件1)26.2用函数观点看一元二次方程_第3页
(课件1)26.2用函数观点看一元二次方程_第4页
(课件1)26.2用函数观点看一元二次方程_第5页
资源描述:

《(课件1)26.2用函数观点看一元二次方程》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、26.2用函数观点看一元二次方程义务教育课程标准实验教科书九年级上册人民教育出版社问题:如图以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地需要用多少时间?所以可以将问题中h的值代入函数解析式,得到关于t的一元

2、二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值;否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程15=20t-5t2t2-4t+3=0t1=1,t2=3当球飞行1s和3s时,它的高度为15m.分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2t1=1st2=3s15m15m(2)解方程20=20t-5t2t2-4t+4=0t1=t2=2当球飞行2s时,它的高度为20m.t1=2s20m(3)解方程20.5=20t-5t2t2-4t+4.1=0因为(-4)2-4×4.1<0,所以方

3、程无解.球的飞行高度达不到20.5m.20m(4)解方程0=20t-5t2t2-4t=0t1=0,t2=4当球飞行0s和4s时,它的高度为0m,即0s时球从地面发出,4s时球落回地面.0s4s从上面可以看出,二次函数与一元二次方程关系密切.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3的值为0,求自变量x的

4、值.观察下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?(1)y=x2+x-2(2)y=x2-6x+9(3)y=x2-x+1(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2

5、-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.1y=x2-6x+9y=x2-x+1y=x2+x-2(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点,这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.一般地,从二次函数y=ax2+bx+c的图象可知(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根.由上面的结论,我们可以利用二次函数的图象求一元二

6、次方程的根.由于作图或观察可能存在误差,由图象将得的根,一般是近似的.例利用函数图象求方程x2-2x-2=0的实数根.解:作y=x2-2x-2的图象,它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7-222464-48-2-4y=x2-2x-2(2.7,0)(-0.7,0)1.汽车刹车后的距离S(单位:m)与行驶时间t(单位为:s)的函数关系式S=15t-6t2,汽车刹车后停下来行驶5米,求汽车刹车后停下来的时间是多少?解:由函数关系可得:5=15t-6t2解方程得x1≈0

7、.98x2≈28.75(不符合实际舍去)所以汽车刹车后停下来的时间为0.98s.2.一个滑雪者从85m长的山坡滑下,滑行的距离为S(单位:m)与滑行的时间t(单位:s)的函数关系式是S=1.8t+0.064t2,他通过这段山坡需要多长时间?解:由函数关系可得:85=1.8t+0.064t2解方程得t1=25t2=-53.125(不符合实际舍去)他通过这段山坡需要25秒的时间

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。