欢迎来到天天文库
浏览记录
ID:42915052
大小:281.25 KB
页数:3页
时间:2019-09-22
《等腰(边)三角形的性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.3 等腰三角形第1课时 等腰(边)三角形的性质教学目标1.掌握等腰三角形的性质定理;(重点)2.掌握等边三角形的性质定理;(重点)3.能运用等腰(边)三角形的性质进行有关的证明或计算.(重点,难点)教学过程一、情境导入我们欣赏下列两个建筑物(如图),图中的三角形是什么样的特殊三角形?这样的三角形我们是怎样定义的,有什么性质?二、合作探究探究点一:等腰三角形的性质【类型一】运用“等边对等角”求角的度数如图,AB=AC,∠A=100°,AB∥CD,求∠BCD的度数.解析:根据等腰三角形的性质,可推出∠B=∠ACB=(1
2、80°-∠A),依据已知条件可知∠BCD=∠B.解:∵∠A=100°,∴∠B+∠ACB=180°-∠A=180°-100°=80°.∵AB=AC,∴∠B=∠ACB=40°.∵AB∥CD,∴∠BCD=∠B=40°.方法总结:求角的度数时,①在等腰三角形中,一定要考虑三角形内角和定理;②有平行线时,要考虑平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补;③两条相交直线中,对顶角相等,两个邻补角之和等于180°.【类型二】分类讨论在等腰三角形求角度中的运用等腰三角形的一个角等于30°,求它的顶角的度数.解析:本
3、题可根据等腰三角形的性质和三角形内角和定理求解,由于本题中没有明确30°角是顶角还是底角,因此要分类讨论.解:①当底角是30°时,顶角的度数为180°-2×30°=120°;②顶角即为30°.因此等腰三角形的顶角度数为30°或120°.方法总结:本题考查了等腰三角形的性质和三角形内角和定理.注意:已知的一个锐角可以是等腰三角形的顶角,也可以是底角;一个钝角只能是等腰三角形的顶角.分类讨论是正确解答本题的关键.【类型三】利用等腰三角形“三线合一”进行计算如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30°.求
4、∠ADC和∠CAD的度数.解析:由已知AB=AC,D是BC边上的中点,根据等腰三角形“三线合一”可得AD为三角形的高及顶角的平分线,从而可求解各个角的大小.解:∵AB=AC,D是BC边上的中点,∴AD⊥BC,DA平分∠BAC.∴∠ADC=90°.又∠B=30°,∴∠BAD=180°-90°-30°=60°.∵DA平分∠BAC.∴∠CAD=∠BAD=60°.∴∠ADC=90°,∠CAD=60°.方法总结:利用等腰三角形“三线合一”的性质进行计算,有两种类型:一是求边长,求边长时应利用等腰三角形的底边上的中线与其他两线互相
5、重合;二是求角度的大小,求角度时,应利用等腰三角形的顶角的平分线或底边上的高与其他两线互相重合.【类型四】利用等腰三角形“三线合一”进行证明如图△ABC中,AB=AC,D为AC上任意一点,延长BA到E使得AE=AD连接DE,求证:DE⊥BC.解析:作AF∥DE,交BC于点F.利用等边对等角及平行线的性质证明∠BAF=∠FAC.在△ABC中由“三线合一”得AF⊥BC.再结合AF∥DE可得结论.证明:作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=
6、∠FAC.又AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形的底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般是用到其中的两条线互相重合.如本题中应用“等腰三角形底边上的高与顶角的平分线互相重合”.探究点二:等边三角形的性质如图,△ABC为等边三角形,∠1=∠2=∠3,求∠BEC的度数.解析:求∠BEC的度数,可利用180°减去∠BEC的外角进行求解,只要求得∠BEF即可,利用三角形的外角的性质可得结果.
7、解:∵△ABC为等边三角形,∴∠ACB=60°.∴∠3+∠BCE=60°.∵∠2=∠3,∴∠BEF=∠2+∠BCE=60°.∴∠BEC=180°-∠BEF=180°-60°=120°.方法总结:等边三角形各个角都相等,并且每个角都等于60°.在与等边三角形有关的计算中,往往要结合三角形外角的性质.三、板书设计等腰三角形的性质等腰三角形的性质是几何中的一个重要内容.在等腰三角形的边和角的有关计算中,要注意分情况讨论.在求边长时,还要注意与三角形的三边关系相结合.在学习中要注意能运用等腰三角形性质的总的前提条件是一个三角形
8、中有两条边相等(即这个三角形是等腰三角形).
此文档下载收益归作者所有