22.1 二次函数的图象和性质 (2)

22.1 二次函数的图象和性质 (2)

ID:42809851

大小:601.50 KB

页数:2页

时间:2019-09-21

22.1 二次函数的图象和性质 (2)_第1页
22.1 二次函数的图象和性质 (2)_第2页
资源描述:

《22.1 二次函数的图象和性质 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、22.1 二次函数的图象和性质22.1.1 二次函数教学目标1.理解二次函数及有关概念.2.能够表示简单变量之间的二次函数关系.教学重点二次函数的概念.教学难点由生活中的实际问题建立二次函数模型.教学设计一师一优课 一课一名师 (设计者:   )教学过程设计一、创设情景 明确目标学生观察图片,教师引出课题:河上架起的拱桥,花园的喷水池喷出的水,投篮球或掷铅球时球在空中经过的路线都会形成一条曲线,这些曲线是否能用函数关系式来表示?它们的形状是怎样画出来的?这些都将在新的一章——二次函数中学习.二、自主学习 指向目标自学教材第28至29页,完成下列填空:1.教材引言中正方体的

2、表面积问题,问题1及问题2中的函数关系式分别表示为:①__y=6x2__、②__m=1,2n2-1,2n__、③__y=20x2+40x+20__.2.我们把形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的__二次__函数.其中__x__是自变量,__a__叫做二次项系数,__b__叫做一次项系数,__c__叫做常数项.3.已知函数y=ax2+bx+c,当a__≠0__时,是二次函数,当a__=0__且b__≠0__时,是一次函数;当a__=0__,b__≠0__,c__=0__时,是正比例函数.三、合作探究 达成目标探究点一 二次函数的概念活动一:上面第

3、1题中的函数①②③有什么共同点?什么样的函数是二次函数?其一般形式是什么样的?【展示点评】二次函数的一般形式y=ax2+bx+c(a≠0,a,b,c为常数).【小组讨论】能否抛开“a≠0”理解二次函数的概念?为什么?对于b,c,它们可否等于0?【反思小结】判断一个函数是否为二次函数,关键是看它是否符合二次函数的特征,若形式比较复杂,则要先化简,再作出判断.具体可从如下几点进行:(1)自变量的最高次数是2;(2)二次项系数不为0;(3)右边是整式;(4)判断时首先将右边化成一般式,不要看表面形式.在a≠0的条件下b,c可以等于0.【针对训练】见学生用书“当堂练习”知识点一探究

4、点二 列出实际问题中的二次函数解析式活动二:[教学建模]某小区要修建一块矩形绿地,设矩形的边长为xm,宽为ym,面积为Sm2,(x>y).(1)如果用18m的建筑材料来修建绿地的边框(即周长),求S与x的函数关系,并求出x的取值范围.(2)根据小区的规划要求,所修建的绿地面积必须是18m2,在满足(1)的条件下,矩形的长和宽各为多少米?思考:题目中蕴涵的公式是什么?第(2)问就是已知__S(函数值)__,求__x(自变量)__的问题.【展示点评】(1)S=-x2+9x(4.5

5、列二次函数关系式的一般步骤有哪些?求自变量的值或二次函数值与以前学过的哪些知识类似?【反思小结】一般地,列实际问题中的二次函数关系式可以按如下步骤进行:(1)审清题意,找出实际问题中的已知量,并分析它们之间的关系,将文字或图形语言转化成数学符号语言;(2)根据实际问题中存在的等量关系或客观存在的某种数量关系(如学过的公式等),建立二次函数关系式,并将之整理成一般形式为y=ax2+bx+c(a≠0);(3)联系实际,写出需要标明的自变量的取值范围.已知二次函数值求自变量的值可以转化为解一元二次方程,而已知自变量的值求二次函数值实际上就是求代数式的值.【针对训练】见学生用书“当

6、堂练习”知识点二四、总结梳理 内化目标1.我们学过的函数有__一次__函数和__二次__函数.2.一次函数的关系式是y=__kx+b__(k≠0);当__b=0__时,一次函数就是正比例函数y=__kx__.3.二次函数的一般形式是:__y=ax2+bx+c__(__a≠0__),其中__ax2__是二次项,__bx__是一次项,__c__是常数项,__b__是一次项系数,__a__是二次项系数.五、达标检测 反思目标1.圆面积公式s=πr2,s与r之间的关系是(C)                              A.正比例函数B.一次函数C.二次函数D.以上答

7、案都不对2.二次函数y=3x2+2x+1中,二次项系数是__3__,一次项系数是__2__,常数项是__1__.3.某农机厂第一个月水泵的产量为50台,若每个月的平均增长率为x,则第三个月的产量y(台)与月平均增长率x之间的函数解析式为__y=50(1+x)2__.4.若y+2与x2成正比例,当x=-3时,y=1,则y与x的函数关系式为__y=1,3x2-2__.5.若y=(m2+m)xm2-2m-1是二次函数,求m的值.解:m的值为3.六、布置作业 巩固目标1.上交作业 教材第41页1、2、8题.2.课后作业 见

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。