欢迎来到天天文库
浏览记录
ID:42246678
大小:17.50 KB
页数:4页
时间:2019-09-10
《数学人教版六年级下册圆锥体积教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、课题圆锥的体积备课人教学内容:九年义务教育六年制小学数学第十二册P29、30教学目标:1.通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积。2.培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。 3.渗透事物间相互联系的辩证唯物主义观点的启蒙教育。教学重点:通过转化的思想理解和掌握圆锥体积的计算公式。教学难点:理解圆柱和圆锥等底等高时体积间的倍数关系。教学过程:一、铺垫孕伏1、提问:(1)圆柱的体积公式是什么?我们是如何推导的?圆柱------(转化)------长方体(2)投影出示圆锥体的图形,学生指图说出圆锥的底面
2、、侧面和高.2.今天我们要学习圆锥体的体积,同学们觉得用什么方法比较好?3.同学们觉得把圆锥体转化成什么比较好呢? 圆锥------(转化)------圆柱学生回忆所学的数学知识中有哪些地方用到了转化的思想。4导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)二、正确选择、训练直觉思维。 1、教师拿出许多大小不等的圆柱体和圆锥体容器展示给学生。提问:(1)同学们打算如何转化圆柱体和圆锥体之间的关系?(2)如果让你在这么多的圆柱体和圆锥体中选择两个来探究,你打算选择什么样的圆柱体和圆锥体,说说你选择的理由。2、在学生讨
3、论的基础上教师强调用等底等高的圆柱体和圆锥体进行讨论。 三、大胆猜想、培养想象能力。在确定用等底等高的圆柱体和圆锥体进行讨论的基础上教师让学生猜想:等第等高的圆柱体和圆锥体的体积之间到底有什么关系呢?同学之间互相交流并说明想法。四、动手实验,得出结论。为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)(学生得出:底面积相等,高也相等。)底面积相等,高也相等,用数学语言说就叫"等底等高"。(板书:等底等高)(2)为什么?既然这两个形体是等底等高的
4、,那么我们就跟求圆柱体体积一样,就用"底面积×高"来求圆锥体体积行不行?(不行,因为圆锥体的体积小)教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。(3)学生分组做实验。A.谁来汇报一下,你们组是怎样做实验的?b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)同学们得出这个结论非常重要,其他组也是这样的吗?我们学过用字母表示
5、数,谁来把这个公式整理一下?(指名发言)(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了沙子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)为什么你们做实验的圆锥体里装满了沙子往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)呢?(在等底等高的情况下。)(老师在体积公式与"等底等高"四个字上连线。)现在我们得到的这个结论就更完整了。(指名反复叙述公式。)今后我们求圆锥体体积就用这种方法来计算。 思考
6、:要求圆锥的体积,必须知道哪两个条件?(5)单项练习 圆锥的底面积是5,高是3,体积是( ) 圆锥的底面积是10,高是9,体积是( )五、运用公式,解决实际问题。1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。。 (1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( ) ⑴立方米②3a立方米③9立方米 (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米 (1)6立方米(2)3立方米(3)2立方米3、判断对错,并说明理由
7、. (1)圆柱的体积相当于圆锥体积的3倍.( ) (2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( ) (3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )六、课堂小结: 通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)七、完成书上练习。1.运用公式完成试一试。一个圆锥形零
此文档下载收益归作者所有