资源描述:
《2019电大微积分初步专科期末复习题及答案资料必考重点【精华打印版》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、1•函数/(%)=ln(x-2)的左义域是10.微分方程A/+(y')3—siny=0的阶数是答案:211•函数于(兀)12.若XTOkx13•已知/(x)=lnx,的定义域是X2•答案:则k=.答案:2则fx)=•答案:(-2,2)2,1•答案:—COSX+C29.函数/(xT)=»—2x+7,则f(x)=答案:x2+630.函数/(兀)=1x2+2x<0x>0则f(0)=x2答案:231.函数/(兀-】)=兀2_2兀,则f(x)=答案:”-114.若jiinxdr15•微分方程卩戶+(#)4sinX=e"的阶数是—3•16•函数f(x)=的定义域是(-2,-1)无彳—
2、2x—332.函数兀+1的间断点是答案:"一133.limxsin—=•38xu(T,4】・17.若lim聖空=2,贝2.2°kx18.曲线y=ev在点(0,1)处的切线方程是_y=x+119.—[ln(x2+l)dx=0.答案:1“sin4%lim=234.若2。sin加,则比=答案:2一sin3%小lim=235・若心°加,则2二电大微积分初步期末复习资料小抄一、填空题答案:(2,3)u(3,+8)X2-2x-32•函数y=——的间断点是二.答案:X=-iX+13.曲线/(%)=vm在(0,1)点的斜率是—.答案:-24.若Jf(x)dx=cos2兀+c,则广(兀)•答
3、案:一4cos2兀5•微分方程卩"+(y)3=o的阶数是一2.6.函数/(兀+1)=F+2x,/(x)=.答案:x2-l[.2,nvein+kyy-II7.函数f(x)=I'x'在兀=0处连续,则"2,x=0■2.8.曲线f(x)=在(0,1)点的斜率是—.答案:
4、9.J:(3«?—5兀+2)dx=・答案:420.微分方程yr=y,y(0)=1的特解为y二e的x次五.21.函数f(x)=—!—+V4-X2的定义域是_ln(x+2)(-2,-1)u(-1,2]—•22.若函数/(x)=F+2,心°,在兀=0处连续,则[k,%=0k=223.曲线$=長在点(1,1)处的斜率是_
5、*_・24j2g嘉+c_25.微分方程#=2兀满足初始条件y(0)=1的特解为_y=x2+1・/(x)=26.函数皿兀一2)的定义域是.答案:(2,32(3,+X)f(牙)=~J==27・函数gx的定义域是.答案:(-°°,5)/(x)=+a/4-x228.函数ln(x+2)的定义域是答案:(一2,-1)U(—1,2]3答案:236.37.38.39.40.41.42.43.£曲线/(兀)=石+1在(1,2)点的斜率是2.曲线/(X)=。在(0,1)点的切线方程是yF+1丄曲线歹=兀2在点(1,1)处的切线方程是13——兀+一2212、"厂一(2、叮=2長■若y二x(x-l
6、)(x-2)(x-3),贝2(0)=—6.已知M=X3+3",则广⑶=27(1+In3).已知f(x)=x则/"(劝二一7.若f(x)=xe';则厂(0)=—2.函数/(兀)=处2+1在区间(°,+°°)内单调增加,-2x44.则a应满足大于零45.若兀兀)的一个原函数为I"2,则fM=O2答案:、兀(c为任意常数)46若兀兀)的一个原函数为兀-严,则/©)二答案:47若“⑴血=心+c,则/(兀)二答案:ex+xex48若“⑴血=血2兀+c,则/⑷答案:2cosx49.若”(兀)血rln兀+c,则广(兀)=丄答案:兀50.若”⑴血=8s2x+c,则广(兀)=答案:-4c
7、os2xdje-'dx=J1••2答案:exdx52j(sinx)fdx=答案:sinx+c53若J=F(x)+c贝gJf(2x-3)ck=丄F(2x—3)+c答案:21Q若J/(x)dx=F(x)+c贝^xf(l-x2)(lx=19——F(l—F)+c答案:254J](sinxcos2兀一兀‘[dr=r_2答案:3(x5-4x+cosx)dx=.255.答案:256.己知曲线〉匸/(兀)在任意点兀处切线的斜率为長,且曲线过©5),则该曲线的方程是。答案:y-2x=-3[(5兀3-3x4-T)dx=57.若」_答案:4-x2dx58.由定积分的几何意义知,J。°答案:4,它
8、是1/4半径为a的圆的面积。—fln(x2+l)dx=59.60-61.62.65.66.答案:0rO?.1I-・答案:2微分方程)'y,y(o)i的特解为.答案:1微分方程。的通解为.答案:訂"微分方程(W)‘+4xy4)=/sin^的阶数为.63・答案:264.函数f(x)=——的定义域是—x>2且ln(x-2)函数y=^^+ln(x-l)的定义域是_(1,3)_。』3_xco,则几0)=_o_1-x2x<0~设fM=67.68.69.70.函数/(无—1)=无~—2x,则f(%)=x~—}“sinx1lim=