A PROBABILISTIC APPROACH TO BOUNDEDPOSITIVE

A PROBABILISTIC APPROACH TO BOUNDEDPOSITIVE

ID:40877976

大小:213.18 KB

页数:10页

时间:2019-08-09

A PROBABILISTIC APPROACH TO BOUNDEDPOSITIVE_第1页
A PROBABILISTIC APPROACH TO BOUNDEDPOSITIVE_第2页
A PROBABILISTIC APPROACH TO BOUNDEDPOSITIVE_第3页
A PROBABILISTIC APPROACH TO BOUNDEDPOSITIVE_第4页
A PROBABILISTIC APPROACH TO BOUNDEDPOSITIVE_第5页
资源描述:

《A PROBABILISTIC APPROACH TO BOUNDEDPOSITIVE》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TRANSACTIONSOFTHEAMERICANMATHEMATICALSOCIETYVolume360,Number12,December2008,Pages6545–6554S0002-9947(08)04473-5ArticleelectronicallypublishedonJune26,2008APROBABILISTICAPPROACHTOBOUNDED/POSITIVESOLUTIONSFORSCHRODINGEROPERATORS¨WITHCERTAINCLASSESOFPOTENTIALSROSSG.PINSKYAbstract.Cons

2、idertheequation∗1d()∆u−Vu=0inR,2ford≥3.ForcertainclassesofpotentialsV,weuseprobabilistictoolstostudytheboundedsolutionsandthepositivesolutionsfor(*).Aprimarymotivationistoofferprobabilisticintuitionfortheresults.1.IntroductionandstatementofresultsInthispaperweuseprobabilistictoolsto

3、studytheboundedsolutionsandthepositivesolutionsforSchr¨odingeroperatorswithcertainclassesofpotentialsinRd.Werestricttod≥3becausethequestionsweaskhavetrivialanswersford=1,2.Aprimarymotivationhereistoofferprobabilisticintuitionfortheresults.Weconsiderclassicalsolutionstotheequation1d(

4、1.1)∆u−Vu=0inR,2whereVisH¨oldercontinuous.Asusual,weletV+=V∨0andV−=−(V∧0),sothatV=V+−V−.Toavoidtrivialities,weassumethatV≡0.LetX(t)bead-dimensionalBrownianmotion.WhentheBrownianmotionstartsfromx∈Rd,wedenoteprobabilitiesbyPxandthecorrespondingexpectationsbyEx.RecallthattheGreen’sfu

5、nctionfor1∆inRd,d≥3,isgivenbyG(x,y)=22

6、y−x

7、2−d,whereωisthesurfacemeasureoftheunitsphereinRd.Asis(d−2)ωddwellknown[3],foranynonnegativefunctionφ,onehas∞2φ(y)(1.2)Exφ(X(t))dt=G(x,y)φ(y)dy=dy.0Rd(d−2)ωdRd

8、y−x

9、d−2ThefollowingassumptionwillalwaysbemadeonthenegativepartV−ofthepotentia

10、lV:Assumption1.∞−−2V(y)supExV(X(t))dt=supdy<1.x∈Rd0(d−2)ωdx∈RdRd

11、y−x

12、d−2ReceivedbytheeditorsJune26,2006and,inrevisedform,January16,2007.2000MathematicsSubjectClassification.Primary60H30,35J10.Keywordsandphrases.Liouvilletheorem,boundedsolutions,positivesolutions,Schr¨odingerequati

13、on.c2008AmericanMathematicalSocietyRevertstopublicdomain28yearsfrompublication6545Licenseorcopyrightrestrictionsmayapplytoredistribution;seehttp://www.ams.org/journal-terms-of-use6546ROSSG.PINSKYByKhasminskii’slemma[14,LemmaB.1.2],Assumption1guaranteesthat∞(1.3)supEexp(V−(X(t))dt

14、)<∞.xx∈Rd0Remark.Actuallyi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。