probabilistic matrix factorization

probabilistic matrix factorization

ID:39813652

大小:104.56 KB

页数:8页

时间:2019-07-11

probabilistic matrix factorization_第1页
probabilistic matrix factorization_第2页
probabilistic matrix factorization_第3页
probabilistic matrix factorization_第4页
probabilistic matrix factorization_第5页
资源描述:

《probabilistic matrix factorization》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ProbabilisticMatrixFactorizationRuslanSalakhutdinovandAndriyMnihDepartmentofComputerScience,UniversityofToronto6King'sCollegeRd,M5S3G4,Canada{rsalakhu,amnih}@cs.toronto.eduAbstractManyexistingapproachestocollaborativefilteringcanneitherhandleverylargedatas

2、etsnoreasilydealwithuserswhohaveveryfewratings.InthispaperwepresenttheProbabilisticMatrixFactorization(PMF)modelwhichscaleslinearlywiththenumberofobservationsand,moreimportantly,performswellonthelarge,sparse,andveryimbalancedNetflixdataset.Wefurtherextendt

3、hePMFmodeltoincludeanadaptiveprioronthemodelparametersandshowhowthemodelcapacitycanbecontrolledautomatically.Finally,weintroduceacon-strainedversionofthePMFmodelthatisbasedontheassumptionthatuserswhohaveratedsimilarsetsofmoviesarelikelytohavesimilarprefer

4、ences.Theresult-ingmodelisabletogeneralizeconsiderablybetterforuserswithveryfewratings.WhenthepredictionsofmultiplePMFmodelsarelinearlycombinedwiththepredictionsofRestrictedBoltzmannMachinesmodels,weachieveanerrorrateof0.8861,thatisnearly7%betterthanthesc

5、oreofNetflix'sownsystem.1IntroductionOneofthemostpopularapproachestocollaborativefilteringisbasedonlow-dimensionalfactormodels.Theideabehindsuchmodelsisthatattitudesorpreferencesofauseraredeterminedbyasmallnumberofunobservedfactors.Inalinearfactormodel,ause

6、r'spreferencesaremodeledbylinearlycombiningitemfactorvectorsusinguser-specificcoefficients.Forexample,forNusersandMmovies,theN×MpreferencematrixRisgivenbytheproductofanN×DusercoefficientmatrixUTandaD×MfactormatrixV[7].Trainingsuchamodelamountstofindingthebest

7、rank-DapproximationtotheobservedN×MtargetmatrixRunderthegivenlossfunction.Avarietyofprobabilisticfactor-basedmodelshasbeenproposedrecently[2,3,4].Allthesemodelscanbeviewedasgraphicalmodelsinwhichhiddenfactorvariableshavedirectedconnectionstovariablesthatr

8、epresentuserratings.Themajordrawbackofsuchmodelsisthatexactinferenceisintractable[12],whichmeansthatpotentiallysloworinaccurateapproximationsarerequiredforcomputingtheposteriordistributionoverhiddenfactorsinsuchmode

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。