factorization (rrqrf)

factorization (rrqrf)

ID:33851097

大小:191.20 KB

页数:9页

时间:2019-03-01

factorization (rrqrf)_第1页
factorization (rrqrf)_第2页
factorization (rrqrf)_第3页
factorization (rrqrf)_第4页
factorization (rrqrf)_第5页
资源描述:

《factorization (rrqrf)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、ABLAS-3VERSIONOFTHEQRFACTORIZATIONWITHCOLUMNPIVOTINGyzxGREGORIOQUINTANA-ORT,XIAOBAISUN,ANDCHRISTIANH.BISCHOFAbstract.TheQRfactorizationwithcolumnpivoting(QRP),originallysuggestedbyGolubandBusingerin1965,isapopularapproachtocomputingrank-revealingfactorizations.ItwasimplementedinLIN

2、PACKwiththeLevel1BLASandinLAPACKwiththeLevel2BLAS.WhiletheLevel2BLASversiongenerallydeliverssuperiorperformance,itmayresultinworseperformanceforlargematrixsizesduetocachee ects.Weintroduceamodi cationoftheQRPalgorithmthatallowstheuseofLevel3BLASkernelswhilemaintainingthenumericalbehav

3、ioroftheLINPACKandLAPACKimplementations.ExperimentalcomparisonsofthisapproachwiththeLINPACKandLAPACKimplementationsonIBMRS/6000,SGIR8000,andDECAlphaplatformsshowconsiderableperformanceimprovements.Keywords.QRFactorization,ColumnPivoting,RankRevealingFactorization,BlockAlgo-rithm1.Intr

4、oduction.ForanymatrixA,thereexistsaso-calledrank-revealingQRfactorization(RRQRF)RR1112(1)AP=QR=(QQ);120R22wherePisapermutationmatrix,Risuppertriangular,andRisnumerically1122negligible[22].TheorderrofRthenrevealsthenumericalrankofA.The rst11rcolumnsofQformanorthonormalbasisfortherang

5、espaceofA,andthe rstrcolumnsofAParethelargestindependentsetofcolumnsofA.Thisinformationisneeded,forexample,ingeodesy[17],computer-aideddesign[19],nonlinearleast-squaresproblems[25],thesolutionofintegralequations[15],andthecalculationofsplines[18].Otherapplicationsariseinbeam-forming[8

6、],spectralestimation[23],regularization[21,29],andeigenproblems[3].Algorithmsforthereliablecomputationofrank-revealingfactorizationshavere-centlyreceivedconsiderableattention(see,forexample[6,7,10,11,20,26,27]).However,themostcommonapproachtocomputingsuchanRRQRFisthecolumn-pivotingpro

7、ceduresuggestedbyBusingerandGolub[9].ThisQRfactorizationwithcolumnpivoting(QRP)mayfailtorevealthenumericalrankcorrectly,butitiswidelyusedbecauseofitssimplicityandpracticalreliability.Thus,itisalsoaveryusefulpreprocessingstepforthemorereliable(andmoreexpensive)RRQRFalgorithms.Allautho

8、rswer

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。