欢迎来到天天文库
浏览记录
ID:38614400
大小:245.69 KB
页数:18页
时间:2019-06-16
《FACTORIZATION WITH GENUS 2 CURVES亏格曲线分解》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、MATHEMATICSOFCOMPUTATIONVolume00,Number0,Pages000{000S0025-5718(XX)0000-0FACTORIZATIONWITHGENUS2CURVESROMAINCOSSETAbstract.Theellipticcurvemethod(ECM)isoneofthebestfactorizationmethodsavailable.Itispossibletousehyperellipticcurvesinsteadofellipticcurvesbutitisintheo
2、ryslower.WeusespecialhyperellipticcurvesandKum-mersurfacestoreducethecomplexityofthealgorithm.OurimplementationGMP-HECMisfasterthanGMP-ECMforfactoringbignumbers.IntroductionTheellipticcurvemethod(ECM)introducedin1985byH.W.Lenstra,Jr.[6]playsanimportantroleinfactorin
3、gintegers.ECMisusedtondmediumsized"(upto60digits)primefactorsofrandom"numbers.Itisalsousedbyotherfac-toringalgorithmslikesievingmethodsforcofactoring[5].ECMisageneralizationofPollard'sp 1algorithm:insteadofworkinginF,weworkinthegroupofppointsonanellipticcurve.We
4、generalizeitbyusinghyperellipticcurvesofgenus2insteadofellipticcurvesofgenus1.Atrstsightthehyperellipticcurvemethod"(HECM)seemsslowerthatECMbecauseoftworeasons:rstthearithmeticofhyperellipticcurvesisslowercom-paredtothearithmeticofellipticcurves,andsecondlyitspro
5、babilityofsuccessissmallerthanthatofECM.IndeedthisprobabilitydependsontheprobabilityofthecardinalityoftheJacobianofthecurvemoduloaprimefactorpofnbeingsmooth.Buttheprobabilityofanumberbeingsmoothdecreaseswithitssize.ByWeil'stheorem,thecardinalityofaJacobianofagenus2c
6、urveonFisaroundp2whereasthecardinalityofanpellipticcurveoverthesameeldisaroundp.ThisseemslikeamajordeterrenttousingHECM.ToavoiditweusespecialhyperellipticcurveswhoseJacobiansareisogenoustotheproductoftwoellipticcurves:theyarecalleddecomposable.OnerunofHECMwiththisk
7、indofcurvesisequivalenttotwosimultaneousrunsofECM,thustheprobabilityofsuccessofHECMwithdecomposablehyperellipticcurvesiscomparabletothatoftwoECM.Thecomplexityofstage1isdominatedbythecostofthearithmeticonthecurves.Ingenus1,thequickestarithmeticisobtainedbyusingMontgo
8、meryformul[8]orthenewEdwardscurves[1].Ingenus2,thebestknownformuluseKummersur-faces[3].TheKummersurfaceisavarietyobtainedbyidentifyingop
此文档下载收益归作者所有