欢迎来到天天文库
浏览记录
ID:40579992
大小:260.33 KB
页数:7页
时间:2019-08-04
《2.2.1 探索直线平行的条件1》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2探索直线平行的条件第1课时探索直线平行的条件(1)【知识与技能】1.会识别由“三线八角”所成的同位角.2.掌握直线平行的条件,并能解决一些问题.【过程与方法】经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.【情感态度】进一步发展空间观念,推理能力和有条理表达的能力.【教学重点】会识别各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行”.【教学难点】判断两直线平行的说理过程.一、情景导入,初步认知1.在同一平面内,两条直线的位置关系是.2.在同一平面内,的两条直线是平行
2、线.3.如教材中P44彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?你能说明其中的道理吗?【教学说明】教师通过设置问题,层层设疑,在引导学生思考、层层释疑的基础上,既复习旧知识,又做好新知识学习的铺垫,同时也不断激活学生思维、生成新问题,引起认知冲突,从而自然引入新课.二、思考探究,获取新知1.动手操作移动活动木条,完成书中P44的做一做内容.2.改变图中∠1的大小,按照上面的方式再做一做,∠1与∠2的大小满足什么关系时,木条a与
3、木条b平行?小组内交流.3.如图,直线AB,CD被直线l所截:具有∠1与∠2,这样位置关系的角,可以看作是在被截直线的同一侧,在截线的同一旁,相对位置是相同的角,我们把这样的角称为同位角.4.图中还有其他的同位角吗?这些角相等也可以得出两直线平行吗?【归纳结论】两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称“同位角相等,两直线平行”.两直线平行,用符号“∥”表示.如直线a与b平行,记作“a∥b”.5.想一想,如何利用三角板画平行线?小明是这样作的,你认为他作得对不对?你能说明其中的原理
4、吗?6.动手画一画:①你能过直线AB外一点P画直线AB的平行线吗?能画几条?②在下图中,分别过C.D画直线AB的平行线EF、GH.那么EF与GH有怎样的位置关系?【教学说明】由浅入深,充分地让学生经历了解决问题的过程,较好的突出了重点,突破了难点.【归纳结论】过直线外一点有且只有一条直线与这条直线平行.平行于同一条直线的两条直线互相平行.几何语言:∵a∥b,a∥c,∴b∥c(平行于同一条直线的两条直线互相平行).三、运用新知,深化理解1.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等
5、,两直线平行.2.如图所示,FE⊥CD,∠2=26°,当∠1=64°时,AB∥CD.3.如图,当∠1=∠D时,可以得到AD∥BC,其理由是同位角相等,两直线平行.4.如图,已知∠1=∠2,试说明AB与CD的关系.解:AB∥CD.理由:∵∠1=∠2(已知)∠2=∠3(对顶角相等)∴∠1=∠3(等量代换)∴AB∥CD(同位角相等,两直线平行)5.如图,若∠1=∠4,∠1+∠2=180°,则AB、CD、EF的位置关系如何?解:∵∠1+∠2=180°,∠2+∠3=180°,∴∠1=∠3,∴AB∥CD.又∵∠1=∠
6、4,∴AB∥EF,∴AB∥CD∥EF.6.如图,∠B=∠C,B、A、D三点在同一直线上,∠DAC=∠B+∠C,AE是∠DAC的平分线,则AE与BC平行吗?为什么?解:AE∥BC.理由:∵∠DAC=∠B+∠C,∠B=∠C,∴∠DAC=2∠B.∵AE是∠DAC的平分线,∴∠DAC=2∠1,∴∠B=∠1,∴AE∥BC.7.如图,BE平分∠FBD,∠ABC=∠C,那么直线FB与AC平行吗?试说明理由.解:FB∥AC.理由如下:∵BE平分∠FBD,∴∠DBE=∠FBE,∵∠DBE=∠ABC,∴∠FBE=∠ABC,∵
7、∠ABC=∠C,∴∠FBE=∠C,∴FB∥AC.【教学说明】进一步激发学生的探究兴趣,学生学会用所学知识解释和解决实际生活中的问题,提高能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.1.布置作业:教材“习题2.3”中第1、2题.2.完成同步练习册中本课时的练习.整节课构建了“以问题研究和学生活动”为中心的课堂学习环境,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点.所以,合理把握教学问题,是保证学生自主、合作、探究的学
8、习方式纵向发展的关键,要克服以完成教学任务为主要目标,不舍得给学生探究时间的倾向,要给学生提供较为充分的思维、探究的时间和空间.
此文档下载收益归作者所有