欢迎来到天天文库
浏览记录
ID:40418724
大小:61.01 KB
页数:4页
时间:2019-08-02
《方差分析实例》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、让4名学生前后做3份测验卷,得到如下表的分数,运用方差分析法可以推断分析的问题是:3份测验卷测试的效果是否有显著性差异? 1、确定类型 由于4名学生前后做3份试卷,是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本。 2、用方差分析方法对三个总体平均数差异进行综合性地F检验 检验步骤如下: 第一步,提出假设: 第二步,计算F检验统计量的值: 因为是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本,所以可将区组间的个别差异从组
2、内差异中分离出来,剩下的是实验误差,这样就可以选择公式(6.6)组间方差与误差方差的F比值来检验三个测验卷的总体平均数差异的显著性。 ①根据表6.4的数据计算各种平方和为: 总平方和: 组间平方和: 区组平方和: 误差平方和: ②计算自由度 总自由度: 组间自由度: 区组自由度: 误差自由度: ③计算方差 组间方差: 区组方差: 误差方差: ④计算F值 第三步,统计决断 根据,α=0.01,查F值表,得到,而实际计算的F检验统计量的值为,即P(F>10.9)<0.01, 样本统计量的值落在了拒绝域内,所以拒绝零
3、假设,接受备择假设,即三个测验中至少有两个总体平均数不相等。 3、用q检验法对逐对总体平均数差异进行检验 检验步骤如下: 第一步,提出假设: 第二步,因为是多个相关样本,所以选择公式(6.8)计算q检验统计量的值: 在为真的条件下,将一次样本的有关数据及代入上式中,得到A和B两组的平均数之差的q值,即: 以此类推,就可得到每对样本平均数之间差异比较的q值,如下表所示: 第三步,统计决断 为了进行统计决断,在本例中,将A,B,C共3组学生英语单词测验成绩的等级排列为: A与C之间和B与C之间包含有1,2两个组,a=2;A与B之间包含有1,2,
4、3三个组,a=3。根据,得到当a=2时,q检验的临界值为 ;当a=3时,q检验的临界值为;将表(6.5)中的q检验统计量的值与q临界值进行比较,得到表(6.6)中的3次测验成绩各对平均数之间的比较结果:表6.63次测试各对样本平均数之差q值的比较结果 *表示在α=0.05显著性水平上有差异,**表示在α=0.01显著性水平上有差异) 从表中可以看出,三个测验中每两个之间的总体平均数都不相等。 因为是同一组被试前后参加三次考试,所得到的样本是相关样本,这些样本所属总体的方差基本相等,所以不需要对两个相关样本所属总体的方差进行齐性检验。 通过以上推断分析,我们可以知道:
5、三份测验卷测试的效果有显著性差异,并且每两份测验卷测试的效果之间都有显著性差异。
此文档下载收益归作者所有