Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification

ID:40352759

大小:235.97 KB

页数:6页

时间:2019-07-31

Convolutional Neural Networks for Sentence Classification_第1页
Convolutional Neural Networks for Sentence Classification_第2页
Convolutional Neural Networks for Sentence Classification_第3页
Convolutional Neural Networks for Sentence Classification_第4页
Convolutional Neural Networks for Sentence Classification_第5页
资源描述:

《Convolutional Neural Networks for Sentence Classification》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ConvolutionalNeuralNetworksforSentenceClassificationYoonKimNewYorkUniversityyhk255@nyu.eduAbstractlocalfeatures(LeCunetal.,1998).Originallyinventedforcomputervision,CNNmodelshaveWereportonaseriesofexperimentswithsubsequentlybeenshowntobeeffectiveforNLPconvolutionalneuralnetworks(CNN)andhave

2、achievedexcellentresultsinsemantictrainedontopofpre-trainedwordvec-parsing(Yihetal.,2014),searchqueryretrievaltorsforsentence-levelclassificationtasks.(Shenetal.,2014),sentencemodeling(Kalch-WeshowthatasimpleCNNwithlit-brenneretal.,2014),andothertraditionalNLPtlehyperparametertuningandstati

3、cvec-tasks(Collobertetal.,2011).torsachievesexcellentresultsonmulti-Inthepresentwork,wetrainasimpleCNNwithplebenchmarks.Learningtask-specificonelayerofconvolutionontopofwordvectorsvectorsthroughfine-tuningoffersfurtherobtainedfromanunsupervisedneurallanguagegainsinperformance.Weadditionallym

4、odel.ThesevectorsweretrainedbyMikolovetproposeasimplemodificationtothear-al.(2013)on100billionwordsofGoogleNews,chitecturetoallowfortheuseofbothandarepubliclyavailable.1Weinitiallykeepthetask-specificandstaticvectors.TheCNNwordvectorsstaticandlearnonlytheotherparam-modelsdiscussedhereinimpro

5、veupontheetersofthemodel.Despitelittletuningofhyper-stateofthearton4outof7tasks,whichparameters,thissimplemodelachievesexcellentincludesentimentanalysisandquestionresultsonmultiplebenchmarks,suggestingthatclassification.thepre-trainedvectorsare‘universal’featureex-1Introductiontractorsthatc

6、anbeutilizedforvariousclassifica-tiontasks.Learningtask-specificvectorsthroughDeeplearningmodelshaveachievedremarkablefine-tuningresultsinfurtherimprovements.Weresultsincomputervision(Krizhevskyetal.,finallydescribeasimplemodificationtothearchi-2012)andspeechrecognition(Gravesetal.,2013)tecture

7、toallowfortheuseofbothpre-trainedandinrecentyears.Withinnaturallanguageprocess-task-specificvectorsbyhavingmultiplechannels.ing,muchoftheworkwithdeeplearningmeth-odshasinvolvedlearningwordvectorrepresenta-OurworkisphilosophicallysimilartoRazaviantionsthroughneu

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。