欢迎来到天天文库
浏览记录
ID:40268436
大小:1.79 MB
页数:29页
时间:2019-07-29
《高等代数课件05587》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一、一般线性方程组的基本概念二、消元法解一般线性方程组§3.1消元法三、齐次线性方程组1.一般线性方程组是指形式为(1)是方程的个数;的方程组,其中代表个未知量的系数,称为方程组的系数;称为常数项。一、一般线性方程组的基本概念2.方程组的解设是个数,如果分别用代入后,(1)中每一个式子都变成恒等式,则称有序数组 是(1)的一个解.(1)的解的全体所成集合称为它的解集合.解集合是空集时就称方程组(1)无解.3.同解方程组如果两个线性方程组有相同的解集合,则称它们是同解的.4.方程组的系数矩阵与增广矩阵矩阵称为方程组(1)的系数矩阵;而矩阵称为方程组(1)的增广矩阵.在中学代数中
2、,我们曾用加减消元法和代入消元法来解二元、三元线性方程组。实际上用加减消元法比用行列式解方程组更具有普遍性。下面考虑解线性方程组:解方程组:把未知量系数和常数按原顺序写成下表→把第1个方程分别乘以(-2)、(-1)加到第2个、3个方程把第1行分别乘以(-2)、(-1)加到第2、3行→二、消元法解一般线性方程组引例把第3个方程分别乘以(-4)、1加到第2个、1个方程把第3行分别乘以(-4)、1加到第2、1行→把第2个方程与第3个方程互换位置把第2行与第3行互换位置→分别把第1个方程和第3个方程乘以和分别用和乘第1行和第3行→把第3个方程分别乘以(-1)、1加到第1、2个方程分别
3、把把第3行乘以(-1)、1加到第1、2行→在用消元法解线性方程组时我们实际上是对方程组进行如下三种变换:用一个数乘某个方程的两边加到另一方程上;用一个非零数乘一个方程的两边;互换两个方程的位置。这三种变换总称为线性方程组的初等变换。如果把方程组写成“数表”(矩阵)的形式,则解方程组就相当于对“数表”(矩阵)进行以下三种变换:用一个数乘矩阵的某一行加到另一行上;用一个非零数乘矩阵的某一行;互换两行的位置。这三种变换被称为矩阵的初等行变换。从上面可以看出,解线性方程组的问题可以转化成对由方程组的未知量系数和常数项所排成的一个“数表”进行相应的“变换”,从而得到方程组的解。这个数表
4、就称为矩阵。抛开具体的背景,下面引进矩阵的定义和它的初等变换。定义1(矩阵):数域上个元素排成形如下数表称为矩阵的或称为数域上的m行n列矩阵,简称阶矩阵,记为。元素,i称为元素所在行的行下标,j称为元素所在列的当m=n时,矩阵亦称为方阵。列下标。若,则称为矩阵A的行列式,记为注意行列式与矩阵在形式上与本质上的区别。定义2(矩阵的初等变换):以下三种变换称为矩阵的初等变换:用一个数乘矩阵的某一行(列)加到另一行(列)上;(消法变换)用一个非零数乘矩阵的某一行(列);(倍法变换)交换矩阵中某两行(列)的位置。(换法变换)为了利用矩阵的行初等变换解线性方程组,我们要解决以下问题:一
5、个线性方程组经初等变换后所得线性方程组是否与原方程组同解。如对方程组(1)作第二种初等变换:简便起见,不妨设把第二个方程的k倍加到第一个方程得到新方程组(1').(1')设 是方程组(1)的任一解,则定理1线性方程组经初等变换后,得到的线性方程组与原线性方程组同解.所以 也是方程组(1')的解.于是有同理可证的(1')任一解也是(1)的解.故方程组(1')与(1)是同解的.由方程组未知量系数按原来的顺序组成的矩阵,称为方程组的系数矩阵,记为A。由方程组未知量系数和常数组成的矩阵称为方程组的增广矩阵,记为对方程组进行初等变换,其实质就是对方程组中未知量系数和常数
6、项组成的矩阵(称为增广矩阵)进行相应的初等变换,因此,我们有定理.2:对线性方程组(1)的增广矩阵进行行初等变换化为,则以为增广矩阵的线性方程组(2)与(1)同解。由前面的讨论知,对一个线性方程组施行初等变换,相当于对它的增广矩阵施行一个对应的行初等变换,那么我们要问:一个矩阵在行初等变换下可以化为怎样的简单形式?定理3:一个矩阵A,通过行初等变换及列换法变换可化为一下阶梯形这里。更进一步,通过行初等变换,可化为所谓阶梯形矩阵是指:从它们的任一行看,从第一个元素起至该行的第一个非零元素止,它们所在位置的下方元素全为零;若该行全为零,则它的下方元素也全为零。证明:若A=0,则A
7、已成阶梯形,若,则A至少有一个元素不为0,不妨设,(否则,设,我们可经行、列变换,使位于左上角)。把第一行分别乘以加到第i行,则A化为用乘第一行得:对中的右下角矩阵类似考虑,若其为0,则结论成立;若其不为0,不妨设,用乘第2行加到第i(i=3,…,m)行,然后用乘第二行得:如此作下去,直到A化为阶梯形B为止。对B进行一系列行的消法变换,则可以把B化为C。定理中的r是矩阵A的秩,是一个确定的数,其意义以后再研究。定理4线性方程组(1)与以下形式的线性方程组同解—(2)其中是的一个排列。只要证明线性方程组(
此文档下载收益归作者所有