欢迎来到天天文库
浏览记录
ID:40264171
大小:650.50 KB
页数:22页
时间:2019-07-29
《22.3-实际问题与二次函数(第2课时利润问题)课件》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、22.3实际问题与二次函数第二课时(如何获得最大利润问题)-202462-4xy⑴若-3≤x≤3,该函数的最大值、最小值分别为()、()。⑵又若0≤x≤3,该函数的最大值、最小值分别为()、()。求函数的最值问题,应注意什么?2、图中所示的二次函数图像的解析式为:1、求下列二次函数的最大值或最小值:⑴y=-x2+2x-3;⑵y=x2+4x项目一:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期少卖出10件。已知商品的进价为每件40元,假设商品售价涨了x元,那么当商品的售价为多少元时,能使每周利润最大?最大利润是多最大利润是多少?来到商场项
2、目二:某商品现在的售价为每60元,每星期可卖出300件,市场调查反映:如果商品每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,当商品售价为多少时,能使每周利润最大?最大利润是多少?来到商场某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?来到商场分析:调
3、整价格包括涨价和降价两种情况先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖件,实际卖出件,销额为元,买进商品需付元因此,所得利润为元10x(300-10x)(60+x)(300-10x)40(300-10x)y=(60+x)(300-10x)-40(300-10x)即(0≤X≤30)(0≤X≤30)可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值。由公式可以求出顶点的横坐标.所以,当定价为65元时,利润最大,最大利润为6250
4、元在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润答:定价为元时,利润最大,最大利润为6050元做一做由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?(0≤x≤20)求出二次函数解析式和自变量的取值范围配方变形,或利用公式求它的最大值或最小值。检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内。解这类题目的一般步骤变式训练:某水果批发商销售每箱进价为40元的苹果,物
5、价部门规定每箱售价不得高于55元。市场调查发现,若每箱以50元的价格销售,平均每天能卖出90箱,价格每涨1元,平均每天少买3箱。那么当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?x(元)152030…y(件)252010…若日销售量y是销售价x的一次函数。(1)求出日销售量y(件)与销售价x(元)的函数关系式;(6分)(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(6分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:中考题选练某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场
6、调查发现:若每箱以50元销售,平均每天可销售100箱.价格每箱降低1元,平均每天多销售25箱;价格每箱升高1元,平均每天少销售4箱。如何定价才能使得利润最大?练一练若生产厂家要求每箱售价在45—55元之间。如何定价才能使得利润最大?(为了便于计算,要求每箱的价格为整数)有一经销商,按市场价收购了一种活蟹1000千克,放养在塘内,此时市场价为每千克30元。据测算,此后每千克活蟹的市场价,每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元(放养期间蟹的重量不变).⑴设x天后每千克活蟹市场价为P元,写出P关于x的函
7、数关系式.⑵如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x的函数关系式。⑶该经销商将这批蟹放养多少天后出售,可获最大利润,(利润=销售总额-收购成本-费用)?最大利润是多少?思考求下列二次函数的最大值或最小值:解:①由题意知:P=30+x.②由题意知:死蟹的销售额为200x元,活蟹的销售额为(30+x)(1000-10x)元。驶向胜利的彼岸∴Q=(30+x)(1000-10x)+200x=--10x2
此文档下载收益归作者所有