资源描述:
《A new asymptotic enumeration technique》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、Anewasymptoticenumerationtechnique:theLov´aszLocalLemmaLinyuanLu∗L´aszl´oSz´ekely†UniversityofSouthCarolina{lu,szekely}@math.sc.eduFirstDraftMay26,2009AbstractOurpreviouspaper[14]appliedageneralversionoftheLov´aszLocalLemmathatallowsnegativedependencygraphs[11]tothesp
2、aceofran-dominjectionsfromanm-elementsettoann-elementset.Equivalently,thesamestorycanbetoldaboutthespaceofrandommatchingsinKn,m.NowweshowhowthecitedversionoftheLov´aszLocalLemmaappliestothespaceofrandommatchingsinK2n.Wealsoprovetightupperboundsthatasymptoticallymatcht
3、helowerboundgivenbytheLov´aszLocalLemma.Asaconsequence,wegivenewproofstoresultsontheenumer-ationofd-regulargraphs.ThetightupperboundscanbemodifiedtothespaceofmatchingsinKn,m,wheretheyyieldasapplicationasymptoticformulasforpermutationandLatinrectangleenumerationproblems
4、.Asanotherapplication,weprovideanewprooftotheclassicalprob-abilisticresultofErd˝os[8]thatshowedtheexistenceofgraphswitharbi-trarylargegirthandchromaticnumber.Inadditiontolettingthegirthandchromaticnumberslowlygrowtoinfinityintermsofthenumberofvertices,weprovidesuchagra
5、phwithaprescribeddegreesequence,ifthedegreesequencesatisfiessomemildconditions.1Lov´aszLocalLemmawithnegativedependencygraphsarXiv:0905.3983v1[math.CO]25May2009Thisisasequeltoourpreviouspaper[14]andweusethesamenotations.LetA1,A2,...,Anbeeventsinaprobabilityspace.Anegat
6、ivedependencygraphforA1,...,Anisasimplegraphon[n]satisfyingPr(Ai
7、∧j∈SAj)≤Pr(Ai),(1)∗ThisresearcherwassupportedinpartbytheNSFDMScontract0701111.†ThisresearcherwassupportedinpartbytheNSFDMScontract0701111.1foranyindexiandanysubsetS⊆{j
8、ij6∈E(G)},iftheconditionalprobabili
9、tyPr(Ai
10、∧j∈SAj)iswell-defined,i.e.Pr(∧j∈SAj)>0.Wewillmakeuseofthefactthatinequality(1)triviallyholdswhenPr(Ai)=0,otherwisethefollowinginequalityisequivalenttoinequality(1):Pr(∧j∈SAj
11、Ai)≤Pr(∧j∈SAj).(2)ForvariantsoftheLov´aszLocalLemmawithincreasingstrength,see[10,18,11,
12、13]:Lemma1[Lov´aszLocalLemma.]LetA1,...,AnbeeventswithanegativedependencygraphG.Ifthereexistnumbersx1,...,xn∈[0,1)suchthatYP