odlyzko. asymptotic enumeration methods (book)(192s)

odlyzko. asymptotic enumeration methods (book)(192s)

ID:14182750

大小:1.06 MB

页数:192页

时间:2018-07-26

odlyzko. asymptotic enumeration methods (book)(192s)_第1页
odlyzko. asymptotic enumeration methods (book)(192s)_第2页
odlyzko. asymptotic enumeration methods (book)(192s)_第3页
odlyzko. asymptotic enumeration methods (book)(192s)_第4页
odlyzko. asymptotic enumeration methods (book)(192s)_第5页
资源描述:

《odlyzko. asymptotic enumeration methods (book)(192s)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AsymptoticEnumerationMethodsA.M.OdlyzkoAT&TBellLaboratoriesMurrayHill,NewJersey079741.IntroductionAsymptoticenumerationmethodsprovidequantitativeinformationabouttherateofgrowthoffunctionsthatcountcombinatorialobjects.Typicalquestionsthatthesemeth-odsanswerare:(1)Howdoesthenumbero

2、fpartitionsofasetofnelementsgrowwithn?(2)Howdoesthisnumbercomparetothenumberofpermutationsofthatset?Theredoexistenumerationresultsthatleavenothingtobedesired.Forexample,ifandenotesthenumberofsubsetsofasetwithnelements,thenwetriviallyhavean=2n.Thisansweriscompactandexplicit,andyie

3、ldsinformationaboutallaspectsofthisfunction.Forexample,congruencepropertiesofanreducetowell-studiednumbertheoryquestions.(Thisisnottosaythatallsuchquestionshavebeenanswered,though!)Theformulaan=2nalsoprovidescompletequantitativeinformationaboutan.Itiseasytocomputeforanyvalueofn,i

4、tsbehaviorisaboutassimpleaspossible,anditholdsuniformlyforalln.However,suchexamplesareextremelyrare.Usually,evenwhenthereisaformulaforthefunctionweareinterestedin,itisacomplicatedone,involvingsummationsorrecurrences.Thepurposeofasymptoticmethodsistoprovidesimpleexplicitformulasth

5、atdescribethebehaviorofasequenceforlargevaluesofindices.Thereisnosatisfactoryde nitionofwhatismeantbysimple"orbyexplicit."However,wecanillustratethisconceptbysomeexamples.Thenumberofpermutationsofnlettersisgivenbybn=n!.Thisisacompactnotation,butonlyinthesensethatfactorialsareso

6、widelyusedthattheyhaveaspecialsymbol.Thesymboln!standsforn(n1)(n2):::21,anditisthelatterformulathathastobeusedtoanswerquestionsaboutthenumberofpermutations.Ifoneisafterarithmeticinformation,suchasthehighestpowerof7,say,thatdividesn!,onecanobtainitfromtheproductformula,bute

7、venthensomeworkhastobedone.Formostquantitativepurposes,however,n!=n(n1):::21isinadequate.Sincethisformulaisaproductofnterms,mostofthemlarge,itisclearthatn!growsrapidly,butitisnotobviousjusthowrapidly.Sinceallbutthelasttermare2,wehaven!2n1,andsinceallbutthelasttwotermsare

8、3,wehaven!3n2,andsoon.Ontheotherhand,e

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。