资源描述:
《函数自变量取值范围(II)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1、确定自变量取值范围函数(二)2、求函数的对应值一般地,设在某个变化过程中有两个变量x、y,如果对于x在它允许取值的范围内的每一个值,y都有唯一确定的值与它对应,那么就说y是x的函数(function),其中x是自变量,y是因变量。如果当x=a时,y=b,那么b叫着当自变量的值为a时的函数值定义包含以下几个内容:1、必须是一个变化过程2、有且只有两个变量3、对于自变量只能在允许取值的范围内才能取值4、当自变量在允许取值的范围内每取定一个值,函数都有唯一的确定值和它对应,这个对应值就叫做函数值自变量允许取那些值呢?范围又如何确定呢?判断正误:(
2、1)变量x,y满足x+3y=1,则y可以是x的函数.(2)变量x,y满足,则y可以是x的函数.(3)变量x,y满足,则y可以是x的函数.练习:判断下列关系式中,y是否是x的函数?(1)y=2x+1(2)(3)(4)(5)下列函数中,与表示同一函数关系的是()同一函数的特征1、自变量的取值范围相同2、函数的对应值的范围相同3、最终的函数表达式也相同为保证函数式有意义,或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围.函数自变量的取值范围是函数成立的先决条件,只有正确理解函数自变量的取值范围,我们才能正确地解决
3、函数问题.初中阶段确定函数自变量的取值范围大致可分为以下三种类型:一、函数关系式中自变量的取值范围在一般的函数关系中自变量的取值范围主要考虑以下四种情况:⑴函数关系式为整式形式:自变量取值范围为全体实数;⑵函数关系式为分式形式:分母的全体不为零⑶函数关系式含算术平方根:被开方数的全体为非负数;⑷函数关系式含零指数的:底数的全体不为零.求函数自变量取值范围的两个方法:(1)要使函数的解析式有意义。①函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。
4、④函数的解析式是三次根式时,自变量的取值应是一切实数。(2)对于反映实际问题的函数关系,应使实际问题有意义。例1.求下列函数的自变量x取值范围(1)y=2x-5(2)(3)(4)(5)练习:求下列函数的自变量x的取值范围:(x≠0)(x≠-1)(x≥0)(x为一切实数)(x≥2)(x为一切实数)想想下面这几道题——看谁做的快而准求下列各函数的自变量x的取值范围。(1)(2)(3)(4)(5)3(6)(7)巩固练习:⑤在函数关系式y=-x+2中,当x=-3时,y=;当y=0时,x=.⑥函数中自变量x的取值范围是;时,y=_________.二、实
5、际问题中自变量的取值范围.在实际问题中确定自变量的取值范围,主要考虑两个因素:⑴自变量自身表示的意义.如时间、用油量等不能为负数.⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.例1.用总长为60m的篱笆围成长方形场地,求长方形面积S(m)与边长x(m)之间的函数关系式,并指出式自变量的取值范围例2.运动员在400米一圈的跑道上训练,他跑一圈所用的时间t(秒)与跑步的速度V(米/秒)之间的函数关系,并指出式自变量的取值范围.例3.分别写出下列函数关系式,并求自变量的取值范围.(1)设圆柱的底面直径和高相等,求圆柱体积v与底面
6、半径R的关系.(2)等腰三角形的顶角度数y°与底角的度数x°的关系注意:实际问题的函数解析式的自变量的取值范围要符合实际的需要(3)为保护环境,小明准备“植树节”期间植树200棵,若他每天植树20棵,求剩下的应植树的棵数y与植树天数x之间的函数关系式,并求出自变量的取值范围.例4.某学校在2300元的限额内,租用汽车接送234名学生和6名教师集体外出活动,共租车6辆。甲、乙两车载客量和租金如下表:甲种车辆乙种车辆载客量(单位:人/辆)4530租金(单位:元)400280设租用甲种车x辆,租车费用为y元,求y与x的函数关系式,并写出自变量x的取值
7、范围.三、几何图形中函数自变量的取值范围几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.特别要注意的是在三角形中“两边之和大于第三边”.3.已知点A(6,0),点P(x,y)在第一象限,且x+y=8,设∆OPA的面积为S.(1)求S关于x的函数表达式;(2)求x的取值范围;(3)求S=12时,点P的坐标.函数求值例:当x=3时,求下列函数的函数值:(1)y=2x+4;(2)y=-2x2;(3)(4)本节我们学习的主要内容是什么?1、确定自变量取值范围你有哪些收获?2、求函数的对应值