资源描述:
《算法案例--辗转相除法与更相减损术》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、算法案例第一课时辗转相除法与更相减损术思考1:小学学过的求两个数的最大公约数的方法?先用两个公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.例:求下面两个正整数的最大公约数:(1)求25和35的最大公约数(2)求49和63的最大公约数25(1)5535749(2)77639所以,25和35的最大公约数为5所以,49和63的最大公约数为7思考:除了用这种方法外还有没有其它方法?例:如何算出8251和6105的最大公约数?新课讲解:一、辗转相除法(欧几里得算法)1、定义:
2、所谓辗转相除法,就是对于给定的两个数,用较大的数除以较小的数。若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时较小的数就是原来两个数的最大公约数。2、步骤(以求8251和6105的最大公约数的过程为例)第一步用两数中较大的数除以较小的数,求得商和余数8251=6105×1+2146结论:8251和6105的公约数就是6105和2146的公约数,求8251和6105的最大公约数,只要求出6105和2146的公约数就可以了。第二步对6105和2146重复第一步
3、的做法6105=2146×2+1813同理6105和2146的最大公约数也是2146和1813的最大公约数。为什么呢?完整的过程8251=6105×1+21466105=2146×2+18132146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0例:用辗转相除法求225和135的最大公约数225=135×1+90135=90×1+4590=45×2显然37是148和37的最大公约数,也就是8251和6105的最大公约数显然45是90和45的最大公约数
4、,也就是225和135的最大公约数思考1:从上面的两个例子中可以看出计算的规律是什么?S1:用大数除以小数S2:除数变成被除数,余数变成除数S3:重复S1,直到余数为0辗转相除法是一个反复执行直到余数等于0才停止的步骤,这实际上是一个循环结构。m=n×q+r用程序框图表示出右边的过程r=mMODnm=nn=rr=0?是否思考2:辗转相除法中的关键步骤是哪种逻辑结构?8251=6105×1+21466105=2146×2+18132146=1813×1+3331813=333×5+148333=14
5、8×2+37148=37×4+0(1)、算法步骤:第一步:输入两个正整数m,n(m>n).第二步:计算m除以n所得的余数r.第三步:m=n,n=r.第四步:若r=0,则m,n的最大公约数等于m;否则转到第二步.第五步:输出最大公约数m.思考3:你能把辗转相除法编成一个计算机程序吗?(2)、程序框图:开始输入m,nr=mMODnm=nr=0?是否n=r输出m结束(3)、程序:INPUT“m,n=”;m,nDOr=mMODnm=nn=rLOOPUNTILr=0PRINTmEND二、更相减损术可半者半之
6、,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之。第一步:任意给定两个正整数;判断他们是否都是偶数。若是,则用2约简;若不是则执行第二步。第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止,则这个等数就是所求的最大公约数。(1)、《九章算术》中的更相减损术:1、背景介绍:(2)、现代数学中的更相减损术:2、定义:所谓更相减损术,就是对于给定的两个数,用较大的数减去较小的数,然后将差和较小的数构成新的一对数,再用
7、较大的数减去较小的数,反复执行此步骤直到差数和较小的数相等,此时相等的两数便为原来两个数的最大公约数。例:用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以,98和63的最大公约数等于73、方法:1、用更相减损术求两个正数84与72的最大公约数.练习:思路分析:先约简,再求21与18的最大公约数,然后乘以两次约简的质因数4。2、求324、243、135这三个
8、数的最大公约数。思路分析:求三个数的最大公约数可以先求出两个数的最大公约数,第三个数与前两个数的最大公约数的最大公约数即为所求。(1)、算法步骤第一步:输入两个正整数m,n(m>n);第二步:若m,n都是偶数,则不断用2约简,使它们不同时是偶数,约简后的了两个数仍记为m,n.第三步:d=m-n.第四步:判断d≠n是否成立.若是,则将n,d中较大者记为m,较小者记为n,返回第三步;否则,2^k*d为所求的最大公约数.思考4:你能根据更相减损术设计程序,求两个正整数的最大公约数吗?IN