课题:§3.3.2函数的极值与导数

课题:§3.3.2函数的极值与导数

ID:39625330

大小:284.00 KB

页数:3页

时间:2019-07-07

课题:§3.3.2函数的极值与导数_第1页
课题:§3.3.2函数的极值与导数_第2页
课题:§3.3.2函数的极值与导数_第3页
资源描述:

《课题:§3.3.2函数的极值与导数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:§3.3.2函数的极值与导数授课时间:总第课时教学目标:1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3.掌握求可导函数的极值的步骤;教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.教学过程:新课讲授一、导入新课观察下图中P点附近图像从左到右的变化趋势、P点的函数值以及点P位置的特点oax1x2x34bxyP(x1,f(x1))y=f(x)Q(x2,f(x2))函数图像在P点附近从左侧到右侧由“上升”变为“下降”(函数由单调递增变为单调递减),在P点

2、附近,P点的位置最高,函数值最大二、数学建构x02y极值点的定义:观察右图可以看出,函数在x=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在x=2的函数值比它附近所有各点的函数值都小,我们说f(2)是函数的一个极小值。一般地,设函数在及其附近有定义,如果的值比附近所有各点的函数值都大,我们说f()是函数的一个极大值;如果的值比附近所有各点的函数值都小,我们说f()是函数的一个极小值。极大值与极小值统称极值。取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点:(让同学讨论)(ⅰ)极值是一个局部概念。由定义可知极值

3、只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。oax1x2x3x4bxy(ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。(ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而>。(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。极值点与导数的关系:复习可导函数在定义域上的单调性与导函数值的相互关系,引导学生寻找函数极值点与导数之间的关系.

4、由上图可以看出,在函数取得极值处,如果曲线有切线的话,则切线是水平的,从而有。但反过来不一定。若寻找函数极值点,可否只由=0求得即可?探索:x=0是否是函数=x的极值点?(展示此函数的图形)在处,曲线的切线是水平的,即=0,但这点的函数值既不比它附近的点的函数值大,也不比它附近的点的函数值小,故不是极值点。如果使,那么在什么情况下是的极值点呢?观察下左图所示,若是的极大值点,则两侧附近点的函数值必须小于。因此,的左侧附近只能是增函数,即,的右侧附近只能是减函数,即,同理,如下右图所示,若是极小值点,则在的左侧附近只能是减函数,即,在的右侧附近只能是增函数,即,oax0b

5、xyoax0bxy从而我们得出结论(给出寻找和判断可导函数的极值点的方法,同时巩固导数与函数单调性之间的关系):[来源:学科网ZXXK]若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值。结论:左右侧导数异号是函数f(x)的极值点=0反过来是否成立?各是什么条件?点是极值点的充分不必要条件是在这点两侧的导数异号;点是极值点的必要不充分条件是在这点的导数为0.例1.求的极值解:因为,所以。下面分两种情况讨论:(1)当>0,即,或时;(2)当<0,即时.当x变化时

6、,,的变化情况如下表:-2(-2,2)2+0-0+↗极大值↘极小值↗因此,当时,有极大值,并且极大值为;当时,有极小值,并且极小值为。函数的图像如图所示。五:回顾与小结:1、极值的判定方法;2、极值的求法注意点:1、f/(x0)=0是函数取得极值的必要不充分条件2、数形结合以及函数与方程思想的应用3、要想知道x0是极大值点还是极小值点就必须判断f¢(x0)=0左右侧导数的符号.六:课外作业七:教后记

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。