欢迎来到天天文库
浏览记录
ID:38985507
大小:152.00 KB
页数:4页
时间:2019-06-23
《19.2.2 一次函数(3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、19.2.2一次函数(3)教学目标:【知识与技能】1.学会用待定系数法确定一次函数解析式.2.了解两个条件确定一个一次函数,一个条件确定一个正比例函数.【过程与方法】1.经历待定系数法的应用过程,提高解决数学问题的能力.2.体验一次函数中数形结合思想的运用.【情感态度】能把实际问题与数学问题相互转化,认识数学与生活的密切关系.【教学重点】待定系数法确定一次函数解析式.【教学难点】灵活运用有关知识解决实际问题.教学过程一、情境导入,初步认识已知两个函数的图象如图所示,请根据图象写出每条直线的表达式.【教学说明】从图象知,图1
2、中直线表示的是正比例函数,其解析式为y=kx形式,关键是如何求出k的值;由图可知图象过点(1,2),所以该点坐标必适合解析式,将坐标代入y=kx即可求出k的值.图2中直线表示的是一次函数,其解析式为y=kx+b形式,代入直线上两点坐标(2,0)与(0,3),通过解方程组即可求出k、b,确定解析式.学生讨论后,由教师小结.确定正比例函数解析式需要1个条件,确定一次函数的解析式需要2个条件,先设出相应的解析式,然后将条件代入得到方程或方程组,求解后确定解析式.二、典例精析,掌握新知先设出函数解析式,再根据条件确定解析式中未知的
3、系数,从而具体写出这个式子的方法,叫做待定系数法.例1已知正比例函数的图象经过点(-4,3),求它的解析式.【分析】求解正比例函数的解析式,我们可以首先设它的解析式为y=kx,根据已知条件,求解出k的值即可.根据这个正比例函数图象经过点(-4,3),意味着当x=-4时,y=3,从而得到k的值.解:由题意可知3=-4k,k=-所以,这个正比例函数解析式为y=-x.例2问点A(-1,3),B(1,-1),C(3,-5)是否在同一条直线上.解:设直线AB的解析式为y=kx+b,由题意得解得∴直线AB:y=-2x+1;当x=3时,
4、y=-2×3+1=-5,∴点C(3,-5)在直线AB上,因此,A、B、C三点共线.【教学说明】本题的实质是先求出过其中的两点确定的一条直线,再把第三点坐标代入直线解析式,如果该点坐标符合解析式,则表明该点在这条直线上,否则三点就不共线.例3一次函数y=kx+4的图象与y轴交于点B,与x轴交于点A,O为坐标原点,且△AOB的面积为4,求一次函数的解析式.【分析】由于k的符号不确定,我们无法画出一次函数的大致图象,但由于题目的信息非常明确,而且条件也非常简单,由此希望同学们能够练成“纸上无图象,而心中有图象”的境界,我们分别用
5、含k的代数式表示A、B两点的坐标,再把坐标转化为线段OA、OB的长度,根据△AOB的面积进而求出k的值.解法一:令x=0,y=4,∴B(0,4),OB=4.令y=0,x=-,∴A(-,0)∴OA=
6、
7、(一定要注意绝对值符号)∵S△AOB=4,∴OA·OB=4.即
8、
9、·4=4,∴k=±2.∴一次函数的解析式为y=±2x+4.【教学说明】解决问题时,应优先利用一些简单明了的条件.显然一次函数y=kx+4与y轴交于点(0,4),与k无关,从这一条件入手,我们也应有如下思路及解答.解法二:令x=0,y=4,∴B(0,4),OB=4
10、.∵S△AOB=4,∴OA·OB=4.∴OA=2,∵点A在x轴上.[要把OA的长度转化为A点的坐标,要注意点A到底在x轴的正半轴上还是在负半轴上]∴A(2,0)或A(-2,0)当A(2,0)时,0=2k+4,k=-2,当A(-2,0)时,0=-2k+4,k=2,∴一次函数解析式为y=±2x+4.三、运用新知,深化理解1.已知A是某正比例函数图象上一点,且点A在第二象限,作AP⊥x轴于P,AQ⊥y轴于Q,且AP=3,AQ=4,求正比例函数的解析式.2.已知一次函数y=2x+m与x轴交于点A,与y轴交于点B,O是坐标原点,且S
11、△AOB=4,求一次函数的解析式.【教学说明】上面两个习题对本节知识进行了拓展,教师应引导、鼓励学生自主解答,再互相交流,并由教师对在黑板上完成的结果进行评点.【答案】1.∵点A在第二象限,AP=3,AQ=4.∴A(-4,3).设该正比例函数解析式为y=kx.则3=-4k,解得k=-所以这个正比例函数的解析式为y=-x.2.令x=0,y=m,∴B(0,m),OB=
12、m
13、令y=0,x=-,则A(-,0),OA=
14、
15、S△AOB=4,∴OA·OB=4,×
16、
17、·
18、m
19、=4.m2=4,m2=16,∴m=±4.∴一次函数的解析式为y=
20、2x±4.四、师生互动,课堂小结根据下列框图引导学生总结.布置作业:1.从教材“习题19.2”中选取.2.完成练习册中本课时练习.
此文档下载收益归作者所有