用代入法解二元一次方程组(二)

用代入法解二元一次方程组(二)

ID:38558658

大小:45.50 KB

页数:5页

时间:2019-06-14

用代入法解二元一次方程组(二)_第1页
用代入法解二元一次方程组(二)_第2页
用代入法解二元一次方程组(二)_第3页
用代入法解二元一次方程组(二)_第4页
用代入法解二元一次方程组(二)_第5页
资源描述:

《用代入法解二元一次方程组(二)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、8.2消元(2)教学目标1、使学生熟练地掌握用代人法解二元一次方程组;2、使学生进一步理解代人消元法所体现出的化归意识;3、体会方程是刻画现实世界的有效数学模型.教学难点进一步理解在用代入消元法解方程组时所体现的化归意识。知识重点学会用代入法解未知数系数的绝对值不为1的二元一次方程组。教学过程(师生活动)设计理念创设活动1、请你编一个能用代人法求解的二元一次方程组,考考你的同桌,看看他是否掌握了.2、结合你的解答,回顾用代人消元法解方程组的一般步骤.本课是对代入消元法的巩固和深化,设置活动目的在于帮助学生迅速再现以往的知识经验,起到承

2、上启下的作用。探究新知1、探索分析问题:教材例2:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?学生独立分析,列出方程组,全班交流.解:设这些消毒液应分装x大瓶和y小瓶,则2、引导学生思考:问题1:此方程与我们前面遇到的二元一次方程组有什么区别?(两个方程里的两个未知数系数的绝对值均不为1)问题2:能用代入法来解吗?问题3:选择哪个方程进行变形?消去哪个未知数?在师生对话交流中,完成本题的板书示范

3、.3、解后反思:(1)如何用代入法处理两个未知数系数的绝对值均不为1的二元一次方程组?(2)列二元一次方程组解应用题的关键是:找出两个等量关系。(3)列二元一次方程组解应用题的一般步骤分为:审、设、列、解、检、答.这里的反思突出了本课的重点,既帮助学生进一步完善代入法解题的步骤,又渗透解决实际问题的程序化思想。巩固新知练习1:用代入法解下列方程组.(1)(2)两名学生演示,老师巡视,着重讲评第(2)小题.第(2)题大多数同学的方法是:由①得:x=③把③代入②,…这种方法计算量较大,容易出错.提出疑问:“是否还有更好的解答方法?通过自主

4、探究后发现由①得,6y=13-5x④,把④代人②解得,x=5,把x=5代入④解得:y=-2∴解后反思:1、把6y看作一个整体,代入消元,使解方程变得简单许多.2、拿到方程,要善于观察结构特点,不急于动笔.练习2.分层练习:学生必须先尝试完成B层练习,如果有困难,那么可以先完成A层练习后再做B层练习,顺利完成B层的同学可以尝试完成C层练习.A层:1.将二元一次方程5x+2y=3化成用含有x的式子表示y的形式是y=;化成用含有y的式子表示x的形式是x=。2.已知方程组:,指出下列方法中比较简捷的解法是()A.利用①,用含x的式子表示y,再

5、代入②;B利用①,用含y的式子表示x,再代入②;C.利用②,用含x的式子表示y,再代入①;D.利用②,用含x的式子表示x,再代人①;B组3、用代入法解方程组:整体代入无代入法的一种重要技巧,它实质就是换元的思想.若学生仍感困惑也可用新未知数去替换原来视为整体的那一部分.(1)(2)C组4、解方程组:5、已知方程组的解为,求a、b练习3:实践活动请你根据方程组编一道符合实际的应用题。这里安排分层次练习,让学生根据自身的需要自由选择不同的题目,在自我挑战中获得成就感教师根据实际情况,对不同的学生进行有针对性的指导,使不同的学生都有发展.这

6、符合新课标的新理念:不同的人在数学上都能获得不同的发展.小结与作业小结提高1、这节课你学到了哪些知识和方法?比如:①对于用代入法解未知数系数的绝对值不是1的二元一次方程组,解题时,应选择未知数的系数绝对值比较小的一个方程进行变形,这样可使运算简便.②列方程解应用题的方法与步骤.③整体代入法等.2、你还有什么问题或想法需要和大家交流?让学生更加明确本节课的知识点,达到查漏补缺的目的。布置作业1、做题:教科书习题8.2第2(3)(4)题,第4题。2、选做题:教科书练习。3、备选题:(1)解方程组(2)利用你学会的整体代入法解下面的方程组:

7、(3)小明外婆送来一篮鸡蛋.这篮鸡蛋最多只能装55只左右.小明3只一数,结果剩下1只,但忘了数多少次,只好重数.他5只一数,结果剩下2只,可又忘了数多少次.他准备再数时,妈妈笑着说:“不用数了,共有52只.”小明惊讶地问妈妈怎么知道的.妈妈笑而不答.同学们,你们知道这是为什么吗?不同层次的学生根据自身的需要选择不同的备用题,达到因材施教的目的。本课教育评注(课堂设计理念,实际教学效果及改进设想)代入法解二元一次方程组是一项重要的数学基本技能.它需要通过一定的训练才能达到熟练、准确的程度.而学生最反感的就是机械的训练.本课设计充分考虑到

8、这点,因而使练习呈现形式的多样化.比如自编考题、分层练习、实践活动等不时地给学生以新鲜感,而无重复枯燥之感.学习数学,要不断归纳总结才能事半功倍,借以提高技能,提高才智.代入消元法的消元思想体现了数学学习中“化未知为已知

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。